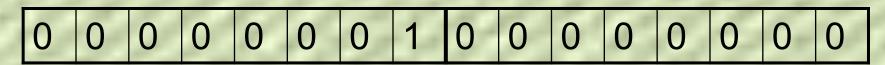


Неотрицательные числа:

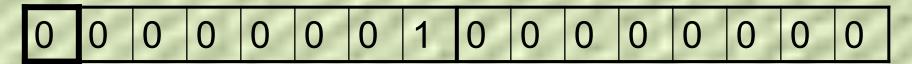
1 число занимает ровно 1 ячейку памяти (8 битов)


0	0	0	0	0	0	0	1

Самое большое неотрицательное число:

1	1	1	1	1	1	1	1

Это число: 1*2^7+1*2^6+1*2^5+1*2^4+1*2^3+1*2^2+1*2^1+1*2^0=255 (в 10-й с.с)


Если число больше 255, то занимается 2 ячейки (16 битов):

Например, число 256.

Положительные и отрицательные числа:

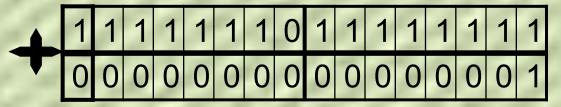
Старший (левый) разряд числа отводится под знак:

0 показывает, что стоит положительное число 256

1 показывает, что стоит отрицательное число – 256

ПК не считает в отрицательных числах!!!

ПК перекодирует отрицательные числа и **ВЫЧИТАНИЕ** заменяет **СЛОЖЕНИЕМ**, что упрощает работу процессора и увеличивает его быстродействие!


Дополнительный код отрицательного числа:

ПК перекодирует, то есть даёт отрицательному числу – *дополнительный код*

- 1. Модуль числа записывается в *прямом* коде (в 2-ой с.с)
- Например число 1— 2561

 0 0 0 0 0 0 1 0 0 0 0 0 0 0
- 2. Получаем *обратный* код (для этого все 1 заменяются на 0, а 0 на 1)
- 1 1 1 1 1 1 0 1 1 1 1 1 1 1

3. К обратному коду прибавляем единицу


<u>Дополнительный код</u> <u>числа – 256 :</u>

1 1 1 1 1 1 1	100	0 0 0	0 0 0
---------------	-----	-------	-------

ПРИМЕР: - 548 +292=?

Переведём в 2-ю с.с:

$$A=-548_{10}=-1000100100_2$$

 $B=292_{10}=100100100_2$

Дома:

- П.2.9. №2.26
- Выучить ПЛАН нахождения **ДОПОЛНИТЕЛЬНОГО КОДА**
- Повторить № 2.1 2.26 (будет тестовая работа)