Неопределенный интеграл

Лекция7

<u>Элементы интегрального</u> <u>исчисления</u>

- 1.Первообразная и неопределенный интеграл
- 2.Основные приемы вычисления неопределенных интегралов
- 3.Интегрирование функций, содержащих квадратный трехчлен
- 4.Интегрирование дробно-рациональных функций
- 5.Интегрирование тригонометрических функций
- 6.Интегрирование некоторых иррациональностей

Неопределенный интеграл, его свойства и вычисление

<u>Первообразная и</u> <u>неопределенный интеграл</u>

Определение. Функция F(x) называется первообразной функции f(x), определенной на некотором промежутке, если F'(x) = f(x) для каждого x из этого промежутка. Например, функция $\cos x$ является первообразной функции $-\sin x$, так как $(\cos x)' = -\sin x$.

<u>Первообразная и неопределенный</u> <u>интеграл</u>

Очевидно, если F(x)- первообразная функции f(x), то F(x)+C, где C некоторая постоянная, также является первообразной функции f(x). Если F(x) есть какая-либо первообразная функции f(x), то всякая функция вида $\Phi(x) = F(x) + C$ также является первообразной функции f(x) и всякая первообразная представима в таком виде.

<u>Первообразная и</u> <u>неопределенный интеграл</u>

Определение. Совокупность всех первообразных функции f(x), определенных на некотором промежутке, называется неопределенным интегралом от функции f(x) на этом промежутке и обозначается $\int f(x) dx$.

<u>Первообразная и</u> <u>неопределенный интеграл</u>

Если F(x)- некоторая первообразная функции f(x), то пишут $\int f(x) dx = F(x) + C$, хотя правильнее бы писать $\int f(x) dx = \{F(x) + C\}$. Мы по устоявшейся традиции будем писать $\int f(x) dx = F(x) + C$. Тем самым один и тот же символ

Тем самым один и тот же символ $\int f(x)dx$ будет обозначать как всю совокупность первообразных функции f(x), так и любой элемент этого множества.

<u>Свойства интеграла,</u> вытекающие из определения

Производная неопределенного интеграла равна подынтегральной функции, а его дифференциал-подынтегральному выражению. Действительно:

1.
$$(\int f(x)dx)' = (F(x) + C)' = F'(x) = f(x);$$

2. $d\int f(x)dx = (\int f(x)dx)'dx = f(x)dx.$

<u>Свойства интеграла,</u> вытекающие из определения

Неопределенный интеграл от дифференциала непрерывно дифференцируемой функции равен самой этой функции с точностью до постоянной:

$$3. \int d\varphi(x) = \int \varphi'(x) dx = \varphi(x) + C,$$
 так как $\varphi(x)$ является первообразной для $\varphi'(x)$.

Свойства интеграла

Сформулируем далее следующие свойства неопределенного интеграла:

4. Если функции $f_1(x)$ и $f_2(x)$ имеют первообразные, то функция $f_1(x) + f_2(x)$ также имеет первообразную, причем $\int [f_1(x) + f_2(x)] dx = \int f_1(x) dx + \int f_2(x) dx$; 5. $\int Kf(x) dx = K \int f(x) dx$; 6. $\int f'(x) dx = f(x) + C$; 7. $\int f(\varphi(x))\varphi'(x) dx = F[\varphi(x)] + C$.

<u>Таблица неопределенных</u> <u>интегралов</u>

1.
$$\int dx = x + C$$
.

2.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + C, (a \neq -1).$$

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

$$4.\int a^x dx = \frac{a^x}{\ln a} + C.$$

$$5. \int e^x dx = e^x + C.$$

$$\mathbf{6.} \int \sin x dx = -\cos x + C.$$

$$7. \int \cos x dx = \sin x + C.$$

$$8. \int \frac{dx}{\sin^2 x} = -ctgx + C.$$

$$9. \int \frac{dx}{\cos^2 x} = tgx + C.$$

10.
$$\int \frac{dx}{1+x^2} = arctgx + C$$
.

Таблица неопределенных

интегралов

$$11. \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C.$$

12.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$
. **17.** $\int shx dx = chx + C$.

13.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$
.. **18.** $\int chx dx = shx + C$.

14.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$
 19. $\int \frac{dx}{ch^2 x} = thx + C$.

15.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$
. **20.** $\int \frac{dx}{sh^2 x} = -cthx + C$.

11.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$
. **16.** $\int \frac{dx}{\sqrt{x^2 \pm a}} = \ln \left| x + \sqrt{x^2 \pm a} \right| + C$.

$$17. \int shx dx = chx + C$$

$$18. \int chx dx = shx + C$$

19.
$$\int \frac{dx}{ch^2x} = thx + C$$
.

$$20. \int \frac{dx}{sh^2x} = -cthx + C$$

Свойства дифференциалов

При интегрировании удобно пользоваться свойствами:

$$1. dx = \frac{1}{a}d(ax)$$

$$2. dx = \frac{1}{a}d(ax+b),$$

$$3. xdx = \frac{1}{2}dx^2,$$

4.
$$x^2 dx = \frac{1}{3} dx^3$$
.

Примеры

Пример. Вычислить $\int \cos 5x dx$.

Решение. В таблице интегралов найдем $\int \cos x dx = \sin x + C$.

Преобразуем данный интеграл к табличному, воспользовавшись тем, что d(ax) = adx.

Тогда:

$$\int \cos 5x dx = \int \cos 5x \frac{d(5x)}{5} = \frac{1}{5} \int \cos 5x d(5x) =$$

$$= \frac{1}{5} \sin 5x + C.$$

Примеры

Пример. Вычислить $\int (x^2 + 3x^3 + x + 1) dx$. **Решение.** Так как под знаком интеграла находится сумма четырех слагаемых, то

раскладываем интеграл на сумму четырех интегралов:

$$\int (x^2 + 3x^3 + x + 1)dx = \int x^2 dx + 3\int x^3 dx + \int x dx + \int dx = 0$$

$$= \frac{x^3}{3} + 3\frac{x^4}{4} + \frac{x^2}{2} + x + C$$

<u>Независимость от вида</u> <u>переменной</u>

При вычислении интегралов удобно пользоваться следующими свойствами интегралов:

Если
$$\int f(x)dx = F(x)+C$$
, то $\int f(x+b)dx = F(x+b)+C$. Если $\int f(x)dx = F(x)+C$, то $\int f(ax+b)dx = \frac{1}{a}F(ax+b)+C$.

Пример

Вычислим

$$\int (2+3x)^5 dx = \frac{1}{3\cdot 6} (2+3x)^6 + C.$$

Методы интегрирования

Интегрирование по частям

Этот метод основан на формуле $\int u dv = uv - \int v du$.

Методом интегрирования по частям берут такие интегралы:

- a) $\int x^n \sin x dx$, где n = 1, 2...k;
- б) $\int x^n e^x dx$, где n = 1, 2...k;
- в) $\int x^n arctgx dx$, где $n = 0, \pm 1, \pm 2, \dots \pm k$.;
- г) $\int x^n \ln x dx$, где $n = 0, \pm 1, \pm 2, ... \pm k$.

При вычислении интегралов а) и б) вводят

обозначения: $x^n = u$, тогда $du = nx^{n-1}dx$, а, например $\sin x dx = dv$,тогда $v = -\cos x$.

При вычислении интегралов в), г) обозначают за u функцию arctgx, $\ln x$, а за dv берут $x^n dx$.

Примеры

Пример. Вычислить $\int x \cos x dx$. Решение.

$$\int x \cos x dx = \begin{vmatrix} u = x, du = dx \\ dv = \cos x dx, v = \sin x \end{vmatrix} =$$

$$x \sin x - \int \sin x dx = x \sin x + \cos x + C.$$

Примеры

Пример. Вычислить

$$\int x \ln x dx = \begin{vmatrix} u = \ln x, du = \frac{dx}{x} \\ dv = x dx, v = \frac{x^2}{2} \end{vmatrix} = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{dx}{x} = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \ln x -$$

$$= \frac{x^2}{2} \ln x - \frac{1}{2} \int x dx = \frac{x^2}{2} \ln x - \frac{1}{2} \frac{x^2}{2} + C.$$

Метод замены переменной

Пусть требуется найти $\int f(x)dx$, причем непосредственно подобрать первообразную для f(x) мы не можем, но нам известно, что она существует. Часто удается найти первообразную, введя новую переменную, по формуле $\int f(x)dx = \int f[\varphi(t)]\varphi_t'dt$, где $x = \varphi(t)$, а t - новая переменная

Интегрирование функций, содержащих квадратный трехчлен

Рассмотрим интеграл
$$\int \frac{ax+b}{x^2+px+q} dx$$
,

содержащий квадратный трехчлен в знаменателе подынтегрального выражения. Такой интеграл берут также методом подстановки, предварительно выделив в знаменателе полный квадрат.

Пример

Вычислить
$$\int \frac{dx}{x^2 + 4x + 5}$$
.

Решение. Преобразуем $x^2 + 4x + 5$,

выделяя полный квадрат по формуле $(a\pm b)^2 = a^2 \pm 2ab + b^2$. Тогда получаем :

$$x^{2} + 4x + 5 = x^{2} + 2 \cdot x \cdot 2 + 4 - 4 + 5 =$$

$$= \left(x^{2} + 2 \cdot 2 \cdot x + 4\right) + 1 = (x + 2)^{2} + 1$$

$$\int \frac{dx}{x^{2} + 4x + 5} = \int \frac{dx}{(x + 2)^{2} + 1} = \begin{vmatrix} x + 2 = t \\ x = t - 2 \\ dx = dt \end{vmatrix} = \int \frac{dt}{t^{2} + 1} =$$

$$= arctgt + C = arctg(x+2) + C.$$

Пример

Найти
$$\int \frac{1+\sqrt{x}}{1+x} dx = \begin{vmatrix} \sqrt{x} = t, x = t^2 \\ dx = 2t dt \end{vmatrix} = \int \frac{1+t}{1+t^2} 2t dt =$$

$$= 2\int \frac{t dt}{1+t^2} + 2\int \frac{t^2}{1+t^2} dt = \int \frac{d(t^2+1)}{t^2+1} + 2\int \frac{1+t^2-1}{1+t^2} dt =$$

$$= \ln(t^2+1) + 2\int dt - 2\int \frac{dt}{1+t^2} =$$

$$= \ln(t^2+1) + 2t - 2arctgt + C =$$

$$= \ln(x+1) + 2\sqrt{x} - 2arctg\sqrt{x} + C.$$

