

План:

- Определение.
- Свойства.
- Десятичные и натуральные логарифмы.
- Логарифмическая функция, ее свойства и график.
- Решение логарифмических уравнений и неравенств.

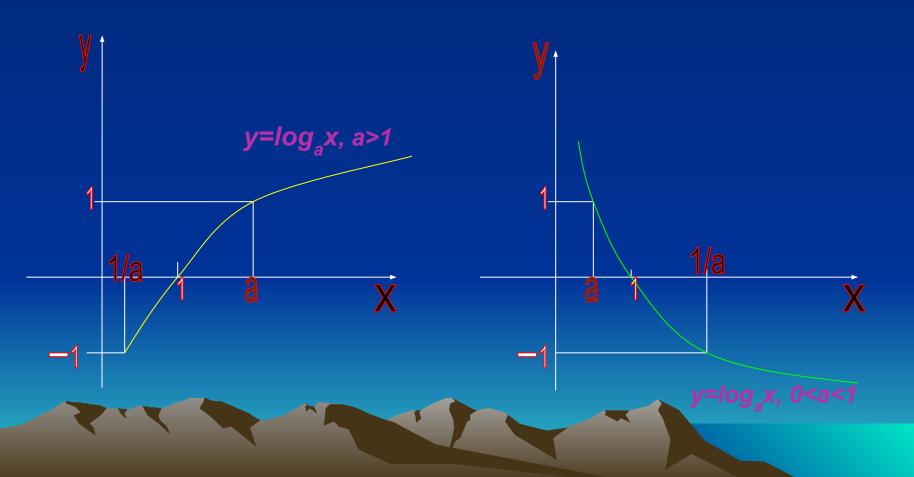
Определение логарифма:

- Логарифмом положительного числа b по основанию a, где a>0, a≠1, называется показатель степени, в которую надо возвести число a, чтобы получить b.
- Основное логарифмическое тождество:
 a^{logab} = b, где b>0, a>0
- Действие нахождения логарифма называется логарифмированием.

Свойства логарифмов:

- Log_a(bc)=log_ab+ log_ac
- Log_a (b/c)= log_ab-log_ac
- Log_ab^r=rlog_ab
- Log_ab=log_cb/log_ca
- Log_ab=1/log_ba
- a logbc = c logba
- Log_{ar}b=1/r log_ab
- a^{logab}= b

Десятичные и натуральные логарифмы:


- Десятичным логарифмом числа называют логарифм этого числа по основанию 10. Записывается lgb
- Натуральным логарифмом числа называют логарифм этого числа по основанию е, где е-иррациональное число, приближенно равное 2,7. При этом записывается Inb

Логарифмическая функция.

• Логарифмическая функция: y=log_ax Свой<u>ства:</u>

- 1. Множество значений логарифмической функции -множество всех положительных чисел
- 2. Множество значений логарифмической функции-множество R всех действительных чисел.
- 3. Логарифмическая функция y=log х является возрастающей на промежутке x>0, если a>1, и убывающей, если 0<a<1
- 4. Если a>1, то функция y=log x принимает положительные значения при x>1, отрицательные при 0<x<1. Если 0<a<1, то функция y=log x принимает положительные значения при 0<x<1, отрицательные при x>1.
- 5. Логарифмическая функция y=log x и показательная функция y=a^x, где a>0, a≠1, взаимно обратны.

Логарифмическая функция и её график:

Логарифмические уравнения

Решить уравнение:

 $Log_2(x+1) + Log_2(x+3) = 3$ Решение:

Используя свойство логарифма, получаем:

$$Log_{2}(x+1)(x+3)=3$$

Из этого равенства по определению логарифма получаем: (x+1)(x+3)=8.

Теперь раскроем скобки и решим квадратное уравнение х²+4х-5=0, откуда х₁=1, х₂=-5

При X_2 =-5 числа (x+1 и x+3)<0, следовательно x=-5 не является корнем уравнения.

Ответ. X=1

Решение систем:

Решить систему уравнений:

$$log_2 x - log_2 y = 1,$$

 $4y^2 + x - 12 = 0.$

Решение:

Из первого уравнения выразим х через у: $\log_2 x/y = \log_2 2$, x/y = 2, x = 2y. Подставив x = 2y во второе уравнение системы, получим $4y^2 + 2y - 12 = 0$, откуда $y_1 = \frac{3}{2}$, $y_2 = -2$. Найдем значения х: $x_1 = 3$, $x_2 = -4$. Проверка показывает, что -4 и -2 – постороннее решение.

Логарифмические неравенства:

• Решить неравенство:

$$\log_2(x-3) + \log_2(x-2) \le 1$$

Решение:

O.o. X>3.

Используя свойства логарифма, получаем:

 $\log_2(x-3)$ (x-2) ≤ $\log_2 2$. Логарифмическая функция с основанием 2 является возрастающей, поэтому при x>3 неравенство $\log_2(x-3)$ (x-2) ≤ $\log_2 2$ выполняется при (x-3)(x-2)≤2. Это неравенство можно записать в виде системы уравнений:

$$(x-3)(x-2) \le 2$$

X>3

Лавенюкова