Методы решения иррациональных уравнений

Автор: Макарова Татьяна Павловна, учитель математики высшей категории ГБОУ СОШ №618 г. Москвы

Контингент: 10 класс физико-математического профиля.

- Обобщение и систематизация способов решения иррациональных уравнений.
- Решение более сложных типов иррациональных уравнений .
- Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений.
- Развивать самостоятельность, воспитывать грамотность речи.

Устная работа

 Можно ли, не решая уравнений, сделать вывод о неразрешимости предложенных уравнений:

$$\sqrt{7-x} = -8 + x;$$

$$\sqrt{x-3} = -\sqrt{x^2 - 1}$$

$$\sqrt{3-x} = 5 - \sqrt{x-9}$$

$$\sqrt{5x+7} + \sqrt{3-4x-x^2} + 2 = 0$$

- Введение новой переменной
- Исследование ОДЗ
- Умножение обеих частей уравнения на сопряженный множитель.
- Сведение уравнения к системе рациональных уравнений с помощью введения переменной.
- Выделение полного квадрата

- Использование ограниченности выражений, входящих в уравнение
- Использование свойств монотонности функций
- Использование векторов
- Функционально графический метод
- Метод равносильных преобразований
- Метод возведения обеих частей уравнения в одну и ту же степень

Решинь уравнение.

$$x^2 + 3x - 18 + 4 \cdot \sqrt{x^2 + 3x - 6} = 0$$

Пусть $x^2+3x-6=t$, t — неотрицательное число, тогда имеем $t-12+4\sqrt{t}=0$.

Отсюда, t_1 =4, t_2 =36.

Проверкой убеждаемся, что t=36 — посторонний корень.

Выполняем обратную подстановку

$$x^2+3x-6=4$$

Отсюда, $x_1 = -5$, $x_2 = 2$.

Исследование ОДЗ

• Решить уравнение

$$3 \cdot \sqrt{3x+1} - 4 \cdot \sqrt[3]{x+7} - \sqrt{x-1} = -\left(2 + \sqrt{1-x}\right)$$

Решение.

Замечаем, что ОДЗ уравнения состоит из одной точки *x*=1.

Проверкой убеждаемся, что x=1 – решение уравнения.

Умножение обеих частей уравнения на сопряженный множитель

• Решить уравнение $\sqrt{x+3} + \sqrt{x+8} = 5$.

Решение. Умножим обе части уравнения на

$$\left(\sqrt{x+3}-\sqrt{x+8}\right)$$

Получим,
$$x+3-x-8=5\cdot(\sqrt{x+3}-\sqrt{x+8})$$

Имеем,
$$\begin{cases} \sqrt{x+3} - \sqrt{x+8} = -1, \\ \sqrt{x+3} + \sqrt{x+8} = 5. \end{cases}$$

Отсюда,
$$2 \cdot \sqrt{x+3} = 4$$
, $x = 1$.

Проверкой убеждаемся, что x = 1 является корнем данного уравнения.

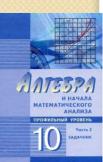
Сведение уравнения к системе рациональных уравнений с помощью введения переменной

• Решить уравнение $\sqrt[3]{x-2} + \sqrt{x+1} = 3$. Решение. Положим $u = \sqrt[3]{x-2}$, $v = \sqrt{x+1}$.

Тогда u+v=3. Так как $u^3=x-2$, $v^2=x+1$, то $v^2-u^3=3$. Итак, в новых переменных имеем

$$\begin{cases} v + u = 3, \\ v^2 - u^3 = 3 \end{cases} \Leftrightarrow \begin{cases} v = 3 - u, \\ u^3 - u^2 + 6u - 6 = 0 \end{cases} \Leftrightarrow \begin{cases} v = 2, \\ u = 1. \end{cases}$$

Значит, *х*=3.



Выделение полного квадрата

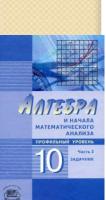
Решиние
уравнение

$$\sqrt{x+2+2} \cdot \sqrt{x+1} + \sqrt{x+2-2} \cdot \sqrt{x+1} = 2.$$
 Заметим, что $x+2+2 \cdot \sqrt{x+1} = \left(\sqrt{x+1}+1\right)^2$ $x+2-2 \cdot \sqrt{x+1} = \left(\sqrt{x+1}-1\right)^2.$

Далные уравнение межи услание можем и можем

$$\begin{array}{l} \text{ TBVX-CNCTeM:} \\ \sqrt{x} + 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 - 2 \\ \sqrt{x} + 1 - 1 \geq 0, \\ \sqrt{x} + 1 - 1 \geq 0, \\ \sqrt{x} + 1 - 1 \leq x \leq 0. \end{array} \\ \begin{array}{l} \sqrt{x} + 1 - 1 < 0, \\ \sqrt{x} + 1 + 1 + 1 - \sqrt{x} + 1 = 2. \end{array} \\ \end{array}$$

Решением первой системы будет x=0, решением второй системы — все числа, удовлетворяющие неравенству $-1 \le x < 0$.



Использование ограниченности выражений, входящих в уравнение

Решинт шеуравнение $\sqrt{x^2+1}+\sqrt[4]{x^4+1}=2-x^2$.

Так как $\sqrt{x^2+1} \ge 1$ u $\sqrt[4]{x^4+1} \ge 1$ для любых значений x,

то левая часть уравнения не меньше двух для $x \in R$ Правая часть $2-x^2 \le 2$ для $x \in R$.

Поэтому уравнение может иметь корнями только те значения x, при которых $\left(\frac{2}{2} \right)^{\frac{1}{2}} \cdot \sqrt{4} \left(\frac{4}{4} \right)^{\frac{1}{2}} = 2$

$$\begin{cases} \sqrt{x^2 + 1} + \sqrt[4]{x^4 + 1} = 2, \\ 2 - x^2 = 2. \end{cases}$$

Решая второе уравнение системы, найдем x=0.

Это значение удовлетворяет и первому уравнению системы. Итак, x=0 — корень уравнения.

Использование свойств монотонности функций

Решинти уравнение $\sqrt[5]{x-1} + \sqrt{x+2} = \sqrt[3]{29-x}$.

Если функция u(x) монотонная, то уравнение u(x) = A либо не имеет решений, либо имеет единственное решение. Отсюда следует, что уравнение u(x) = v(x), где u(x) - возрастающая, а v(x) – убывающая функции, либо не имеет решений, либо имеет единственное решение.

Подбором находим, что *x*=2 и оно единственно.

Использование векторов

Решение уравнение $x \cdot \sqrt{1+x} + \sqrt{3-x} = 2 \cdot \sqrt{x^2+1}$. ОДЗ: $-1 \le x \le 3$. Пусть вектор $a\{x;1\}, b\{\sqrt{1+x}; \sqrt{3-x}\}$

Скалярное произведение векторов

$$\overset{\bowtie}{a} \cdot \overset{\bowtie}{b} = x \cdot \sqrt{x+1} + \sqrt{3-x}.$$

$$\begin{vmatrix} \mathbb{A} \\ a \end{vmatrix} \cdot \begin{vmatrix} \mathbb{A} \\ b \end{vmatrix} = \sqrt{x^2 + 1} \cdot \sqrt{1 + x + 3 - x} = 2 \cdot \sqrt{x^2 + 1}$$

Получили
$$\begin{vmatrix} a \cdot b \end{vmatrix} = \begin{vmatrix} a \end{vmatrix} \cdot \begin{vmatrix} b \end{vmatrix}$$
 Отсюда, $\frac{x}{\sqrt{1+x}} = \frac{1}{\sqrt{3-x}}$

Возведем обе части в квадрат. Решив уравнение, получим $x=1; x=1\pm\sqrt{2}$

Самостоятельная работа с последующей проверкой

ВАРИАНТ 1

$$\sqrt{|x^{2}-5|} + \sqrt{|x^{2}-47|} = |x+7|-1,$$

$$(x+2)\sqrt{x^{2}-x-20} = 6x+12,$$

$$\sqrt[3]{35} + x + \sqrt[6]{3}\sqrt{5-x} = \sqrt[6]{25-x^{2}}.$$

ВАРИАНТ 2

$$\sqrt[3]{1}, x = 1 + \sqrt{x - 1},$$

$$\sqrt[5]{2} + \sqrt{x + 2} = 3,$$

$$\sqrt[6]{3} \sqrt[7]{65} \cdot \sqrt[7]{5} \cdot \sqrt[4]{x} = 54.$$

Домашнее задание

• Решить систему уравнений

$$\begin{cases} \sqrt{\frac{6x}{x+y}} + \sqrt{\frac{x+y}{6x}} = \frac{5}{2}, \\ xy - x - y = 9. \end{cases}$$

Решите уравнения:

$$\sqrt{x^2 + x - 2} + \sqrt{x^2 - 4x + 3} = \sqrt{2x^2 - 3x + 1}$$

$$\sqrt{x+8+2\sqrt{x+7}} + \sqrt{x+1-\sqrt{x+7}} = 4.$$

Источники



http://rudocs.exdat.com/docs/index-18133.html http://dist-tutor.info/mod/lesson/view.php http://ru.wikibooks.org/wiki/

