Arkalyk state pedagogical Institute named after Y. Altynsarin

Theme: Power

Prepared by: Shoibasov A. M-31.
Checked by: Sarsenbaeva Zh.
" People unfamiliar with algebra can not imagine the wonderful things that can be achieved with the help of ... called science."

G.W Leibniz

* Determination of a natural indicator

Powers of a with natural exponent n is the product of n factors, each of which is equal to a.

* Properties with a natural indicator of the degree of

$$
\begin{aligned}
& a^{m} \cdot a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n} \\
& (a b)^{n}=a^{n} b^{n} \\
& \left(a^{m}\right)^{n}=a^{m n}
\end{aligned}
$$

* Multiplying powers with the same bases

${ }^{*}$ The division of powers with the same

For any
arbitrary
$\operatorname{natural~}_{\text {number } a \neq 0}^{m} \quad a^{m} \div a^{n}=a^{m-n}$ and m and n, such that $\mathrm{m}>\mathrm{n}$
$a^{m} \div a^{n}=a^{m-n}$

* Exponentiation works

${ }^{*}$ Exponentiation degree

*Exponentiation fraction

For any
numbers a and
$\mathrm{b}>0$ and any
positive
integer n

History of the number of degree

In his famous book " Arithmetic " Diophantus of Alexandria described the first natural degree

> Rene Descartes in his
> "geometry" (1637), we find the current designation of degrees a^{2}, a^{3}, \ldots

*" Silences " Game

1. Follow these steps:
$\mathbf{x}^{11} \cdot \mathbf{x} \cdot \mathbf{x}^{2}$;
x^{14} : x^{5};
$\left(\mathrm{a}^{4}\right)^{3}$;
$(-3 a)^{2}$.
2. Compare the expression to zero :
$(-5)^{7} ; \quad(-6)^{18} ; \quad(-4)^{11} .(-4)^{8} \quad(-5)^{18} \cdot(-5)^{6} ; \quad-(-4)^{8}$.
3. Calculate the value of the expression :
$-1 \cdot 3^{2} ; \quad(-1 \cdot 3)^{2} \quad 1 \cdot(-3)^{2} ; \quad-(2 \cdot 3)^{2} ; \quad 1^{2} \cdot(-3)^{2}$

THE GAME " THE PAIR OF NUMBERS "

1) $2 x y \cdot 3 x^{2} y^{5}$	1) $-5 x^{4} y^{5}$
2) $3 x y^{3} \cdot x^{3} y^{6}$	2) $-x^{5} y^{10} z^{3}$
3) $-0,6 a c^{3} \cdot(-8) a^{2} c^{4}$	3) $6 a^{3} c^{5}$
4) $-5 a^{2} c \cdot 2 a c \cdot\left(-0,6 c^{3}\right)$	4) $6 x^{3} y^{6}$
5) $x y^{3} z^{3} x \cdot x^{3} y^{7}$	5) $-9 x^{4} y^{6} z^{2}$
	6) $4,8 a^{3} c^{7}$
	7) $2 x^{4} y^{9}$

*ANSWERS :

$$
\begin{aligned}
& (1,4) \\
& (2,7) \\
& (3,6) \\
& (4,3) \\
& (5,2)
\end{aligned}
$$

Computational pause

$$
\begin{array}{ll}
\text { 1) } c^{3} \cdot c^{5}= & \text { 6) } c^{7}: c^{5}= \\
\text { 2) } c^{8}: c^{6}= & \text { 7) }\left(c^{4}\right)^{3} \cdot c= \\
\text { 3) }\left(c^{4}\right)^{3}= & \text { 8) } c^{4} \cdot c^{5} \cdot c^{0}= \\
\text { 4) } c^{3} \cdot c^{5}: c^{6}= & \text { 9) } c^{16}: c^{8}= \\
\text { 5) } c^{14} \cdot c^{8}= & \text { 10) }\left(c^{5}\right)^{3}=
\end{array}
$$

*Comparing expressions

Compare without performing calculations. Find the correct inequalities. From their respective letters make up the name of the architect, the project is the building of the Bolshoi Theater in Moscow was built in 1825 :
(g) $(-15)^{10}<0$
(O) $(-6,5)^{4}>(-8,4)^{3}$
(C) $(-3,2)^{13}>0$
(B) $(-3,4)^{2}>-3,4^{2}$
(5) $-4,1^{12}<0$
(A) $\mathrm{X}^{101} \cdot \mathrm{X}^{21}<0$
(M) $-(-2)^{62}>0$
(E) $\frac{(-15)^{4}}{-15^{4}}<0$

*What number illustrates a circle?

Find out how many shows a circle, if the shaded portion shows a specified number. A record in the form of a degree.

Reflection

I know	I learned	I want to know

THANK YOU FOR ATTENTION

