Муниципальное общеобразовательное учреждение средняя школа №30

KBAAPATIUHAA OVHKUIA

Выполнила:

ученица 11 «Д» класса Воронина Наталья Руководители: Крагель Т.П., Гремяченская Т.В.

2006 г. г. Старый Оскол

Содержание:

- 1. Функция $y = ax^2$, её график и свойства
- 2. Графики функций $y = ax^2 + n$ и $y = a(x m)^2$
- 3. Построение графика квадратичной функции

ФУНКЦИЯ $y = ax^2$ ЕЕ ГРАФИК И СВОЙСТВА

Определение. Квадратичной функцией называется функция, которую можно задать формулой вида $y = ax^2 + bx + c$, где x - независимая переменная, a, b и c - некоторые числа, причем $\alpha \neq 0$

Примером квадратичной функции является зависимость пути от времени при равноускоренном движении. Если тело движется с ускорением $a_{\rm M/c^2}$ и к началу отсчета времени t прошло путь s_0 м, имея в этот момент скорость v_0 м/с, то зависимость пройденного пути s (в метрах) от времени t (в секундах) выражается формулой:

 $s = \frac{at^2}{2} + v_0 + s_0.$

Если, например, a=6, $v_0=5$, $s_0=20$, то формула примет вид:

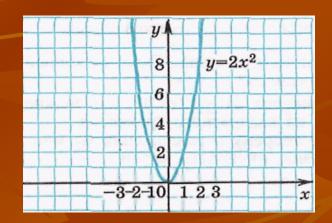
$$s = 3t^2 + 5t + 20.$$

Изучение квадратичной функции мы начнем с частного случая - функции $y = ax^2$. При a = 1 формула $y = ax^2$ принимает вид $y = x^2$. С этой функцией мы уже встречались. Графиком этой функции является парабола.

Построим график функции $y = 2x^2$. Составим таблицу значений этой функции:

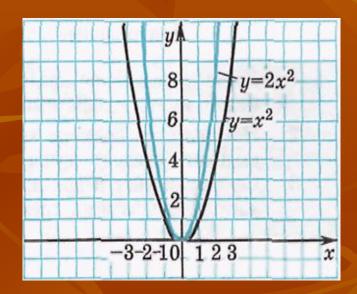
х	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
у	8	4.5	2	0.5	0	0.5	2	4.5	8

Построим точки, координаты которых указаны в таблице. Соединив их плавной линией, получим график функции $_{\mathcal{V}}=2x^2$.



При любом $x \neq 0$ значение функции $y = 2x^2$ больше соответствующего значения функции $y = x^2$ в 2 раза. Если переместить каждую точку графика функции $y = x^2$ вверх так, чтобы расстояние от этой точки до оси x увеличилось в 2 раза, то она перейдет в точку графика функции $y = 2x^2$, при этом каждая точка этого графика может быть получена из некоторой точки графика функции $y = x^2$

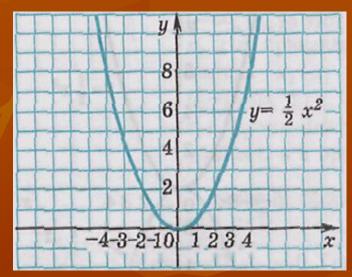
Иными словами, график функции $y = 2x^2$ можно получить из параболы $y = x^2$ растяжением от оси x в 2 раза.



Построим теперь график функции $y = \frac{1}{2}x^2$. Для этого составим таблицу ее значений:

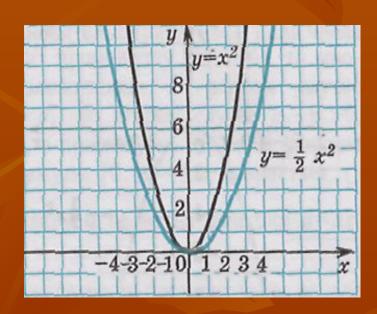
x	-4	-3	-2	-1	0	1	2	3	4
у	8	4.5	2	0.5	0	0.5	2	4.5	8

Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции $y = \frac{1}{2} x^2$:



При любом $x \neq 0$ значение функции $y = \frac{1}{2} x^2$ меньше соответствующего значения функции $y = x^2$ в 2 раза. Если переместить каждую точку графика функции $y = x^2$ вниз так, чтобы расстояние от этой точки до оси x уменьшилось в 2 раза, то она перейдет в точку графика функции $y = \frac{1}{2} x^2$ причем каждая точка этого графика может быть получена из некоторой точки графика функции $y = x^2$.

Таким образом, график функции $y = \frac{1}{2} \chi$ можно получить из параболы $y = x^2$ сжатием к оси x в 2 раза.



Вообще график функции $y = ax^2$ можно получить из параболы $y = x^2$ растяжением от оси x в a раз, если a>1, и сжатием к оси x в $\frac{1}{\alpha}$ раз, если 0< a<1.

Рассмотрим теперь функцию $y = ax^2$ **при** *a*<0.

Построим график функции $y = -\frac{1}{2} x^2$, для чего составим таблицу значений этой функции:

х	-4	-3	-2	-1	0	1	2	3	4
у	-8	-4.5	-2	-0.5	0	-0.5	-2	-4.5	-8

Воспользовавшись этой таблицей, построим график функции $y = -\frac{1}{2}x^2$.

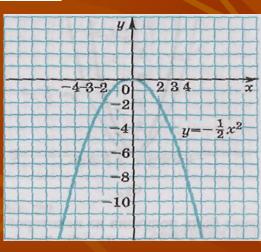
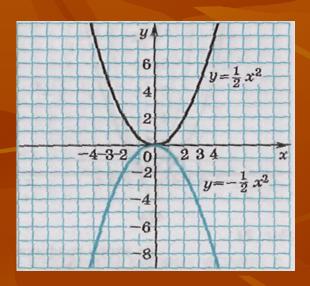


График функции $y = -\frac{1}{2}x^2$ может быть получен из графика функции $y = \frac{1}{2}x^2$

с помощью симметрии относительно оси х.



Свойства функции $y = ax^2$ при a>0.

- 1. Если x=0, то y=0. График функции проходит через начало координат.
- 2. Если $\chi \neq 0$, то у>0. График функции расположен в верхней полуплоскости.
- 3. Противоположным значениям аргумента соответствуют равные значения функции. График функции симметричен относительно оси у.
- 4. Функция убывает в промежутке $(-\infty;0]$ и возрастает в промежутке $[0;+\infty)$.
- 5. Наименьшее значение, равное нулю, функция принимает при x=0, наибольшего значения функция не имеет. Областью значений функции является промежуток $[0;+\infty)$.

Свойства функции $y = ax^2$ при a<0.

- 1. Если x=0, то y=0. График функции проходит через начало координат.
- 2. Если $\chi \neq 0$, то y<0. График функции расположен в нижней полуплоскости.
- 3. Противоположным значениям аргумента соответствуют равные значения функции. График функции симметричен относительно оси у.
- 4. Функция возрастает в промежутке $(-\infty;0]$ и убывает в промежутке $[0;+\infty)$.
- 5. Наибольшее значение, равное нулю, функция принимает при x=0, наименьшего значения функция не имеет. Областью значений функции является промежуток $(-\infty;0]$.

графики функции
$$y = ax^2 + n$$
 и $y = a(x - m)^2$

График функции y=f(x)+n можно получить из графика функции y=f(x) с помощью параллельного переноса вдоль оси y на n единиц вверх, если n>0, или на -n единиц вниз, если n<0.

График функции y=f(x-m) можно получить из графика функции y=f(x) с помощью параллельного переноса вдоль оси x на m единиц вправо, если m>0, или на - m единиц влево, если m<0.

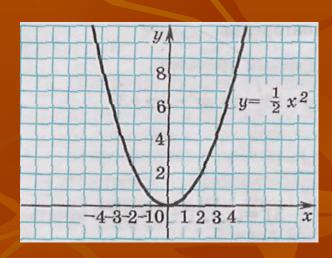
График функции y=f(x-m)+n можно получить из графика функции y=f(x) с помощью двух соответствующих параллельных переносов.

Пример 1. Выясним, что представляет собой график функции $y = \frac{1}{2}x^2 + 3$. С этой целью в одной системе координат построим графики функций $y = \frac{1}{2}x^2$ и $y = \frac{1}{2}x^2 + 3$.

Составим таблицу значений функции $y = \frac{1}{2}x^2$:

x	-4	-3	-2	-1	0	1	2	3	4
у	8	4.5	2	0.5	0	0.5	2	4.5	8

График функции $y = \frac{1}{2}x^2$ изображен на рисунке:



Чтобы получить таблицу значений функции $y = \frac{1}{2}x^2 + 3$ для тех же значений аргумента, достаточно к найденным значениям функции $y = \frac{1}{2}x^2$ прибавить 3:

(2)

х	-4	-3	-2	-1	0	1	2	3	4
y	11	7.5	5	3.5	3	3.5	5	7.5	11

Получим график функции

$$y = \frac{1}{2}x^2 + 3$$
, который изображен на рисунке:

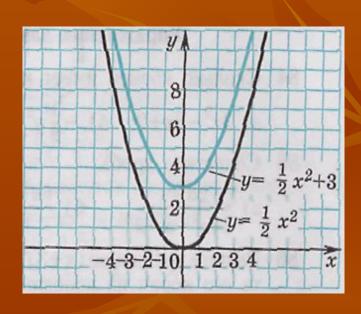


График функции $y=\frac{1}{2}x^2+3$ - парабола, полученная в результате сдвига вверх графика функции $y=\frac{1}{2}x^2$

Вообще график функции $y = ax^2 + n$ является параболой, которую можно получить из графика функции $y = ax^2$ с помощью параллельного переноса вдоль оси y на n единиц вверх, если n > 0, или на - n единиц вниз, если n < 0.

Пример 2. Рассмотрим теперь функцию $y = \frac{1}{2}x(x-5)^2$ и выясним, что представляет собой ее график.

Для этого в одной системе координат построим графики функций $y = \frac{1}{2}x^2$

и $y = \frac{1}{2}x(x-5)^2$. Для построения графика функции $y = \frac{1}{2}x^2$ воспользуемся таблицей (1). Составим теперь таблицу значений функции $y = \frac{1}{2}x(x-5)^2$. При этом в качестве значений аргумента выберем те, которые на 5 больше соответствующих значений аргумента в таблице (1). Тогда

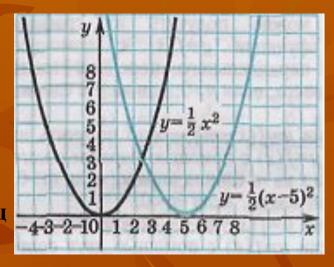
соответствующие им значения функции $y = \frac{1}{2}x(x-5)^2$ будут те же, которые записаны во второй строке таблиць2(1):

(3)

х	1	2	3	4	5	6	7	8	9
y	8	4.5	2	0.5	0	0.5	2	4.5	8

График функции $y = \frac{1}{2}x(x-5)^2$ - парабола, полученная в результате сдвига вправо графика функции $y = \frac{1}{2}x^2$

Вообще график функции $y = a(x - m)^2$ является параболой, которую можно получить из графика функции $y = ax^2$ с помощью параллельного переноса вдоль оси х на м единиц вправо, если m>0, или на - m единиц влево, если *m<0*.

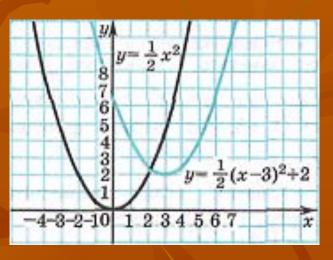


Полученные выводы позволяют понять, что представляет собой график

Функции $y = a(x-m)^2 + n^2$ Рассмотрим, например, функцию $y = \frac{1}{2}(x-3)^2 + 2$. Ее график можно

получить из графика функции $v = \frac{1}{2}x^2$ с помощью двух параллельных переносов - сдвига параболы на 3 единины вправо и на 2 единицы вверх.

Вообще график функции $y = a(x-m)^2 + n$ является параболой, которую можно получить из графика функции $y = ax^2$ с помощью двух параллельных переносов: сдвига вдоль оси x на m единиц вправо, если m > 0, или на - m единиц влево, если m < 0, и сдвига вдоль оси y на n единиц вверх - если n > 0, или на - n единиц вниз, если n < 0.



Заметим, что производить параллельные переносы можно в любом порядке: сначала выполнить параллельный перенос вдоль оси *x*, а затем вдоль оси *y* или наоборот.

ПОСТРОЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ

Рассмотрим квадратичную функцию $y = ax^2 + bx + c$. Выделим из трехчлена $ax^2 + bx + c$ квадрат двучлена:

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + 2x \times \frac{b}{2a} + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right) =$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}.$$

Отсюда $y = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$. Мы получили формулу вида $y = a(x - m)^2 + n$

где $m = -\frac{b}{2a}$, $n = -\frac{b^2 - 4ac}{2a}$.

Значит, график функции $y = ax^2 + bx + c$ получить из графика функции $y = ax^2 + bx + c$ помощью двух параллельных переносов – сдвига вдоль оси x и сдвига вдоль оси y.

Отсюда следует, что график функции $y = ax^2 + bx + c$ есть парабола, вершиной которой является точка (m;n), где $m = -\frac{b}{2}$, $n = -\frac{b^2 - 4ac}{2}$. Осью симметрии параболы служит прямая x=m параллельная оси y. При a>0 ветви параболы направлены вверх, при a<0 - вниз.

Чтобы построить график квадратичной функции, нужно:

- 1) найти координаты вершины параболы и отметить ее в координатной плоскости;
- 2) построить еще несколько точек, принадлежащих параболе;
- 3) соединить отмеченные точки плавной линией.

Пример 1. Построим график функции $y = 0.5x^2 + 3x + 0.5$.

Графиком функции $y = 0.5x^2 + 3x + 0.5$ является парабола, ветви которой направлены вверх. Найдем координаты m и n вершины этой параболы:

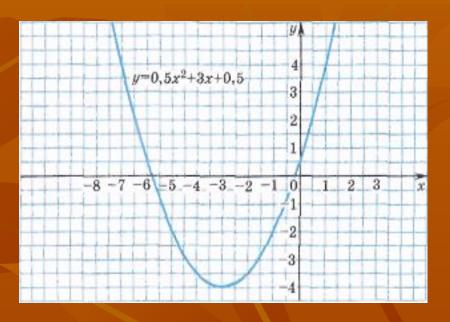
$$m = -\frac{b}{2a} = -\frac{3}{2 \times 0.5} = -3;$$
 $n = 0.5 \times (-3)^2 + 3 \times (-3) + 0.5 = -4.$

Значит, вершиной параболы является точка (-3; -4). Составим таблицу значений функции:

х	-7	-6	-5	-4	-3	-2	-1	0	1
у	4	0.5	-2	-3.5	-4	-3.5	-2	0.5	4

Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции $v = 0.5x^2 + 3x + 0.5$

При составлении таблицы и построении графика учитывалось, что прямая является осью симметрии параболы. Поэтому мы брали точки с абсциссами - 4 и -2, -5 и -1, -6 и 0, симметричные относительно прямой (эти точки имеют одинаковые ординаты).



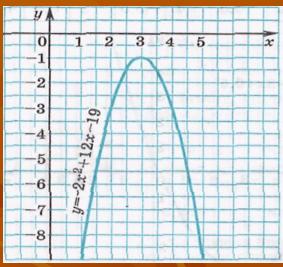
Пример 2. Построим график функции $y = -2x^2 + 12x - 19$. Графиком этой функции является парабола, ветви которой направлены вниз. Найдем координаты ее вершины:

$$m = -\frac{b}{2a} = -\frac{12}{2 \times (-2)} = 3;$$
 $n = -2 \cdot 3^2 + 12 \cdot 3 - 19 = -1.$

Вычислив координаты еще нескольких точек, получим таблицу:

х	1	2	3	4	5
у	-9	-3	-1	-3	-9

Соединив плавной линией точки, координаты которых указаны в таблице, получим график функции $y = -2x^2 + 12x - 19$



Пример 3. Построим график функции $y = \frac{1}{4}x^2 + x + 1$ Графиком функции $y = \frac{1}{4}x^2 + x + 1$ является парабола, ветви которой направлены вверх. Найдем координаты ее вершины:

$$m = -\frac{b}{2a} = -\frac{-1}{2 \times \frac{1}{4}} = -2;$$
 $n = \frac{1}{4} \cdot (-2)^2 - 2 + 1 = 0.$

Вычислив координаты еще нескольких точек, получим таблицу:

х	-5	-4	-3	-2	-1	0	1
у	2 1/4	1	1/4	0	1/4	1	$2\frac{1}{4}$

График функции $y = \frac{1}{4}x^2 + x + 1$ изображен на рисунке:

