- 1. Топографический БПЛА мультироторного типа: ТТХ
 - 2. Мультироторный БПЛА как средство получения геоинформационного контента в ЧС
 - 3. Применение комплексов беспилотных летательных аппаратов в системе мониторинга территорий.

Выполнили: ст.Вячеслав Барбасов, Павел Руднев Научный руководитель А.В. Гречищев

Московский Государственный Университет Геодезии и Картографии, Москва, Россия

*Предпосылками применения БПЛА в качестве нового инструмента отслеживания ЧС являются недостатки двух традиционных способов получения данных ДЗЗ с помощью космических аппаратов (космическая съемка) и воздушных пилотируемых аппаратов (аэрофотосъемка).

		Аэростатические	Аэродинамически е	Реактивные		
			Гибкое крыло		Фиксированное крыло	Вращающееся крыло
	Безмоторные	Аэростаты	Воздушные змеи и аналоги безмоторных аппаратов сверхлегкой авиации (парапланы, дельтапланы и др.)	Планеры		
	Моторные	Дирижабли	Аналоги моторных аппаратов сверхлегкой авиации (парапланы, дельтапланы и др.)	БПЛА самолетного типа	БПЛА вертолетного типа	Космические реактивные аппараты

* В СИГ "Кречет" ведется разработка платформ для целей

картографического мониторинга.

Nº	Характеристики	БАФК Кречет	БАФК	
п/п		Самолет	Кречет	
			Аэростат	
1	Рабочий Размер д*ш*в, мм	1800*1500*	2000*2000*	
		430	4000	
2	Транспортировочный размер д*ш*в, мм	350*1500* 430	400*400*400	
3	Скорость горизонтального полета км/ч	40100	0ветра	
4	Рабочая высота полёта над уровнем земли, м	601000	0.300	
5	Продолжительность полета в мин, кг	до 50	неограниче нно	
6	Макс взлетный вес, кг	3,5	8	
7	Макс масса полезной нагрузки	1,2	5	
8	Диапазон рабочих температур, °С	-25° +50°C	-20° +50°C	
9	Скорость ветра на старте, не более, м/с	8	12	
10	Скорость ветра на высоте 300м, не более чем м/с	15	12	
12	Размер посадочной площади, не менее	2*30	3*3	
4.0	M*M			
13	Обслуживающий персонал, чел	2-3	2-3	
14	Двигательная установка электромотор, шт	1	-	

Характеристика	Квадракоптер "Шмидт"	Гексакоптер "Джигирнаут"	Октокоптер Топокоптер "Дредноут"	
Рабочий размер, мм	350x350x270	825x825x325	1100×1100×450	
Транспортировочный размер, мм×мм×мм	350x350x150	825x300x325	1100×1100×250	
Скорость горизонтального полета, км/ч	0÷55	0÷45	0÷50	
Рабочая высота полёта над уровнем земли, м	5÷250	10÷350	10÷450	
Воздушный потолок, км	2	2	2	1
Продолжительность полета, мин.	до 25	до 20	до 20	1
Максимальный взлетный вес, кг	2,5	6	10	
Максимальная масса полезной нагрузки, кг	0,8	2,5	4	,
Взлетная масса, кг	1,4	3	5	
Диапазон рабочих температур, °С	-25 ÷ +50	-20°C+40°C	-25 ÷ +50	
Скорость ветра на старте, не более, м/с	6	8	10	
Скорость ветра на высоте , не более, м/с	8	10	12	
Размер посадочной площадки, не менее, м×м	1×1	2*2	3×3	
Обслуживающий персонал, чел.	1-2	1-2	2	1
Двигательная установка электромотор, шт.	4	6	8	
Дополнительная курсовая камера (разрешение) (Управление по осям)	нет	нет	Да, (752x582), (2 оси)	
Складной	нет	да	нет	40
Основанная область применения	Мониторинг, силовые структуры	Мониторинг,	Картография, Мониторинг	

* Мультироторный БПЛА вертолетного типа разработанный в СКБ МИИГАиК «Кречет», - октокоптер «Дредноут». Аппарат может быть использован для получения снимков, пригодных для создания и обновления карт и планов местности, формирования цифровых моделей местности, 3D-моделей зданий и объектов, тепловизионных карт, проведения панорамной съемки, а также в интересах мониторинга развития чрезвычайных ситуаций (ЧС) природного и техногенного характера.

* Функции и элементы наземной станции


Для целей картографического мониторинга мультироторный БПЛА должен рассматриваться в совокупности с его приборным оснащением и полезной нагрузкой - БАС (Беспилотная авиационная система)

БАС, помимо самого БПЛА, в котором установлен бортовой комплекс управления, состоит из полезной нагрузки и наземной станции управления.

- Автоматическое управление полетом;
- Навигационное обеспечение полета;
- Ввод и обработка задания на полет;
- Организация беспроводного канала связи с оператором;
- Приём, обработка и хранение полученной информации (видеоданные и телеметрия),
- Выдача сигналов управления БПЛА.

* Информация получаемая операторами

* К полезной нагрузке для задач БПЛА могут относится:

- цифровая фотокамера (видеокамера)
- тепловизор
- ИК-камера
- радиолокационное оборудование (эхолот)
- счетчик Гейгера

* Примеры фотосъемочных залетов:
Высота 100 метров камера canon 550D объектив 18мм Продольное и поперечное перекрытие по 65% Время залетов по 8 минут Скорость на маршруте 5м/с

Трехмерная модель местности. Перспективный вид Заокский полигон МИИГАиКа, под Серпуховым

*Проводились испытания и в съемке в тепловом диапазоне

* Способы использования мультироторного БПЛА в задачах мониторинга окружающей среды:

- *Картографический мониторинг
- *Топографическая съемка
- *Многозональная съемка
- *Тепловизионная съемка
- * снимки для создания 3D
- *Контроль ЧС
- *****Геология
- *Кадастр (стереопара)
- *Задачи агропромышленного комплекса
- *контроль условий сельскохозяйственных угодий (полей)
- * Экологический мониторинг:
 - радиоактивного излучения;
 - химического загрязнения;
 - бактериологического загрязнения.

