
Стратегия развития атомной энергетики России до 2050 года

Рачков В.И., Директор Департамента научной политики Госкорпорации «Росатом», доктор технических наук, профессор

> ATOMCON-2008 26.06.2008

Мировые прогнозы развития атомной энергетики

- WETO «World Energy Technology Outlook - 2050», European Commission, 2006
- «The Future of Nuclear Energy», Massachusetts Institute of Technology, 2003

- Выравнивание удельных энергопотреблений в развитых и развивающихся странах потребует увеличения спроса на энергоресурсы к 2050 г. в три раза.
- □ Существенную долю прироста мировых потребностей в топливе и энергии может взять на себя атомная энергетика, отвечающая требованиям крупномасштабной энергетики по безопасности и экономике.

Состояние и ближайшие перспективы развития атомной энергетики мира

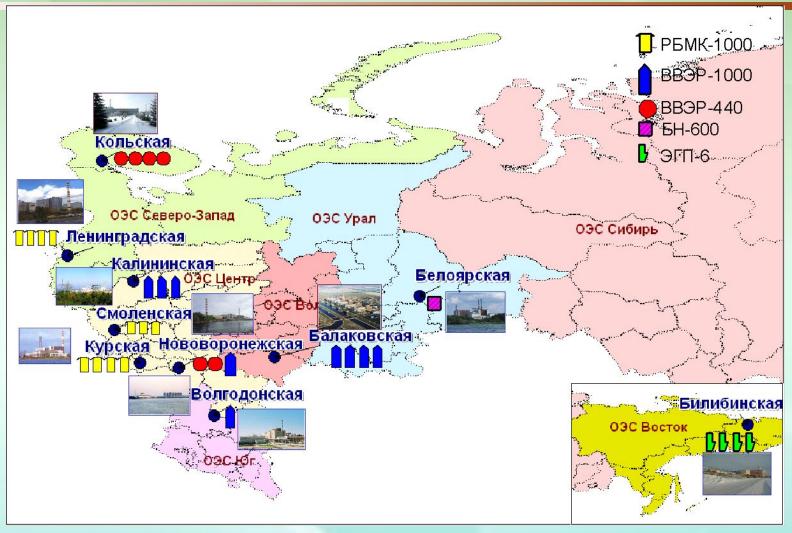
К концу 2007 года в 30-ти странах мира (в которых живут две трети населения планеты) действовали **439** ядерных энергетических реакторов общей установленной мощностью **372,2 ГВт(эл)**. Ядерная доля в электрической генерации в мире составила **17%**.

	Charles of the		1 0
Страна	Кол-во реакторов, шт.	Мощность, МВт	Доля АЭ в произв. э/э, %
Франция	59	63260	76,9
Литва 🎳 🦠	1	1185	64,4
Словакия	5	2034	54,3
Бельгия	7	5824	54,1
Украина	15	13107	48,1
Швеция	10	9014	46,1
Армения	1	376	43,8
Словения	1	666	41,6
Швейцария	S 50 0005	3220	40,0
Венгрия	4	1829	36,8
Корея, Юж.	Южная Амери	17451	35,3
Болгария	2	1906	32,3
Чехия	6	3619	30,3
Финляндия	74,	2696	28,9
Япония	55	47587	27,5
Германия	. DVE . 17	20470	<u>6</u> ehne 27, 3

Страна	Кол-во реакторов, шт.	Мощность, МВт	Доля АЭ в произв. э/э, %
США	104	100582	19,4
Тайвань (Китай)	6	4921	19,3
Испания	8	о-Восточная	17,4
Россия	31	21743	16,0
Великобритания	19	10222	15,1
Канада	18	12589	14,7
Румыния	2	1300	13,0
Аргентина	2	935	6,2
ЮАР	2	1800	5,5
Мексика	2	1360	4,6
Нидерланды	1	482	4,1
Бразилия	2	1795	2,8
Индия	17	3782	2,5
Пакистан	2	425	2,3
Китай	11	8572	1,9
Итого	439	372202	17,0

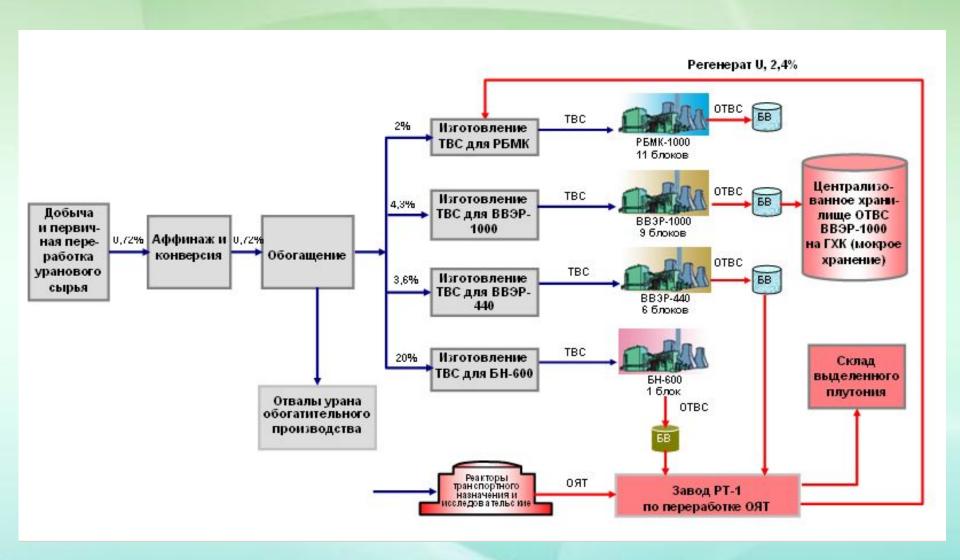
- в 12 странах строятся 30 ядерных энергоблоков общей мощностью 23,4 ГВт(э).
- около **40** стран официально заявили о намерениях создать ядерный сектор в своей национальной энергетике.

Двухэтапное развитие атомной энергетики


- 1. Энергетика на тепловых реакторах и накопление в них плутония для запуска и параллельного освоения быстрых реакторов.
- 2. Развитие на основе быстрых реакторов крупномасштабной АЭ, постепенно замещающей традиционную энергетику на ископаемом органическом топливе.
- **Стратегической целью** развития АЭ являлось овладение на основе быстрых реакторов неисчерпаемыми ресурсами дешевого топлива урана и, возможно, тория.
- Тактической задачей развития АЭ было использование тепловых реакторов на U-235 (освоенных для производства оружейных материалов, плутония и трития, и для атомных подводных лодок) с целью производства энергии и радиоизотопов для народного хозяйства и накопления энергетического плутония для быстрых реакторов.

Атомная отрасль России

В настоящее время отрасль включает в себя:


- 1. Ядерно-оружейный комплекс (ЯОК).
- 2. Комплекс по обеспечению ядерной и радиационной безопасности (ЯРБ).
- 3. Ядерный энергетический комплекс (ЯЭК):
 - ядерно-топливный цикл;
 - атомная энергетика.
- 4. Научно-технический комплекс (НТК).
- **Госкорпорация «РОСАТОМ» призвана обеспечить единство системы управления** в целях синхронизации программ развития отрасли с системой внешних и внутренних приоритетов России.
- Основная задача ОАО «Атомэнергопром» формирование глобальной компании, успешно конкурирующей на ключевых рынках.

АЭС России в 2008 году

- В 2008 году работают 10 АЭС (31 энергоблок) мощностью 23,2 ГВт.
- В 2007 году АЭС произвели 158,3 млрд.кВт.ч электроэнергии.
- Доля АЭС: в общем производстве электроэнергии 15,9% (в европейской части – 29,9%); в общей установленной мощности - 11,0%. 6

ЯЭК: Ядерно-топливный цикл

Недостатки современной ядерной энергетики

- **1. Открытый ЯТЦ тепловых реакторов** ограниченный топливный ресурс и проблема обращения с ОЯТ.
- 2. Большие капитальные затраты на сооружение АЭС.
- **3. Ориентация на энергоблоки большой единичной мощности** с привязкой к электросетевым узлам и крупным электропотребителям.
- 4. Низкая способность АЭС к маневру мощностью.
- □ В настоящее время в мире нет определенной стратегии обращения с ОЯТ тепловых реакторов (к 2010 г. Будет накоплено более 300 000 тонн ОЯТ, с ежегодным приростом 11 000-12 000 тонн ОЯТ).
- В России накоплено ~14 000 тонн ОЯТ суммарной радиоактивностью ~4,6 млрд. Ки с ежегождным приростом 850 тонн ОЯТ.
- □ Необходим переход на сухой способ хранения ОЯТ.

Переработку основной массы облученного ядерного топлива целесообразно отложить до начала серийного строительства быстрых реакторов нового поколения.

Проблемы обращения с РАО и ОЯТ

- □ Тепловой реактор мощностью 1 ГВт производит в год ~800 тонн низко- и среднеактивных РАО и 30 тонн высокоактивного ОЯТ.
- Высокоактивные отходы, занимая по объему менее 1%, по суммарной активности занимают 99%.
- Ни одна из стран не перешла к использованию технологий, позволяющих решить проблему обращения с облученным ЯТ и радиоактивными отходами.
- □ Тепловой реактор электрической мощностью 1 ГВт производит ежегодно ~200 кг плутония. Скорость накопления плутония в мире составляет ~70 т/год.
- □ Основным международным документом, регулирующим использование плутония, является Договор о нераспространении ядерного оружия (ДНЯО). Для усиления режима нераспространения необходима его технологическая поддержка.

Направления стратегии в области атомного машиностроения

- □ Достройка производства критических элементов технологии ЯСПП на российских предприятиях, полностью или частично входящих в структуру Госкорпорации "РОСАТОМ".
- □ Создание альтернативных нынешним монополистам поставщиков основного оборудования. По каждому типу оборудования предполагается сформировать не менее двух возможных производителей.
- □ Необходимо формирование тактических и стратегических альянсов Госкорпорации «РОСАТОМ» с основными участниками рынка.

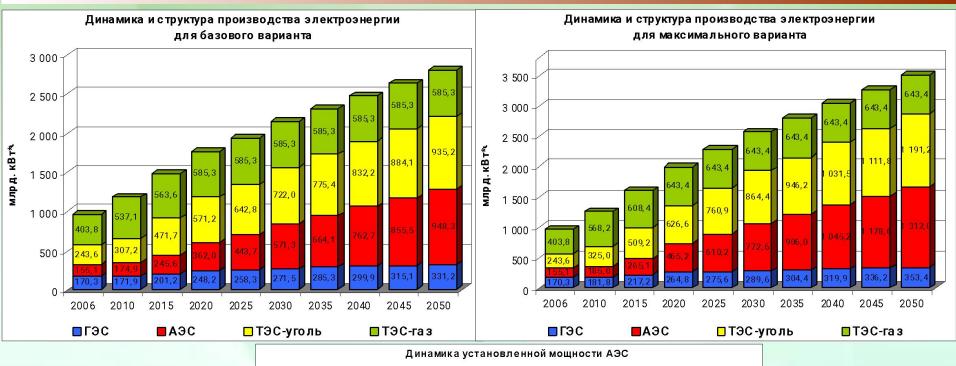
Требования к крупномасштабным энерготехнологиям

- Крупномасштабная энерготехнология не должна зависеть от естественной неопределенности, связанной с добычей ископаемого топливного сырья.
- Процесс «сжигания» топлива должен быть безопасным.
- Локализуемые отходы должны быть физически и химически не более активны, чем исходное топливное сырье.
- При умеренном росте установленной мощности АЭ ядерная энергетика будет развиваться в основном на тепловых реакторах с незначительной долей быстрых реакторов.
- В случае интенсивного развития ядерной энергетики решающую роль в ней станут играть быстрые реакторы.

Ядерная энергетика и риск распространения ядерного оружия

- Элементы ядерной энергетики, определяющие риск распространения ядерного оружия:
 - Разделение изотопов урана (обогащение).
 - Выделение плутония и/или U-233 из облученного топлива.
 - Долговременное хранение облученного топлива.
 - Хранение выделенного плутония.
- Новая ядерная технология не должна приводить к открытию новых каналов получения оружейных материалов и использованию ее для подобных целей.
- Развитие ядерной энергетики на быстрых реакторах с соответствующим образом построенным топливным циклом создает условия для постепенного снижения риска распространения ядерного оружия.

Развитие атомной энергетики России до 2020 года



Штатный коэффициент должен уменьшаться от современных 1,5 чел/МВт до 0,3-0,5 чел/МВт.

Переход к новой технологической платформе

- Ключевым элементом НТП является развитие технологии ЯСПП с реактором на быстрых нейтронах.
- Концепция «БЕСТ» с нитридным топливом, равновесным КВ, и тяжелометаллическим теплоносителем является наиболее перспективным выбором для создания базы новой ядерной энерготехнологии.
- □ Страхующим проектом является промышленно освоенный быстрый реактор на натриевом теплоносителе (БН). В силу проблем с масштабированием данный проект является менее перспективным, чем «БЕСТ», на его основе предполагается отработка новых видов топлива и элементов замкнутого ЯТЦ.
- Принцип внутренне присущей безопасности:
 - детерминистическое исключение тяжелых реакторных аварий и аварий на предприятиях ядерного топливного цикла;
 - трансмутационный замкнутый ядерный топливный цикл с фракционированием продуктов переработки ОЯТ;
 - технологическую поддержку режима нераспространения.

Возможная структура энергогенерации к 2050 году

Доля АЭ в ТЭК по выработке - 40%

Доля АЭ в ТЭК по вырабртке - 35%

Периоды развития ядерных технологий в XXI веке

1. Мобилизационный период:

- модернизация и повышение эффективности использования установленных мощностей, достройка энергоблоков, эволюционное развитие реакторов и технологий топливного цикла с их внедрением в промышленную эксплуатацию,
- разработка и опытная эксплуатация инновационных технологий для АЭС и топливного цикла.

2. Переходный период:

расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла, (быстрые реакторы, высокотемпературные реакторы, реакторы для региональной энергетики, замкнутый уран-плутониевый и торий-урановый цикл, использование полезных и выжигание опасных радионуклидов, долговременная геологическая изоляция отходов, производство водорода, опреснение воды).

3. Период развития:

развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики. 16

Краткосрочные задачи (2009-2015 гг.)

Формирование технической базы для решения проблемы энергообеспечения страны на освоенных реакторных технологиях с безусловным развитием инновационных технологий:

- Повышение эффективности, модернизация, продление срока службы действующих реакторов, достройка энергоблоков.
- Обоснование работы реакторов в режиме маневренности и разработка систем поддержания работы АЭС в базовом режиме.
- Сооружение энергоблоков следующего поколения, включая АЭС с БН-800 с одновременным созданием пилотного производства МОХ топлива.
- Разработка программ регионального атомного энергоснабжения на базе АЭС малой и средней мощности.
- Развертывание программы работ по замыканию ЯТЦ по урану и плутонию для решения проблемы неограниченного топливообеспечения и обращения с РАО и ОЯТ.
- Развертывание программы использования ядерных энергоисточников для расширения рынков сбыта (теплофикация, теплоснабжение, производство энергоносителей, опреснение морской воды).
- □ Сооружение энергоблоков в соответствие с Генсхемой.

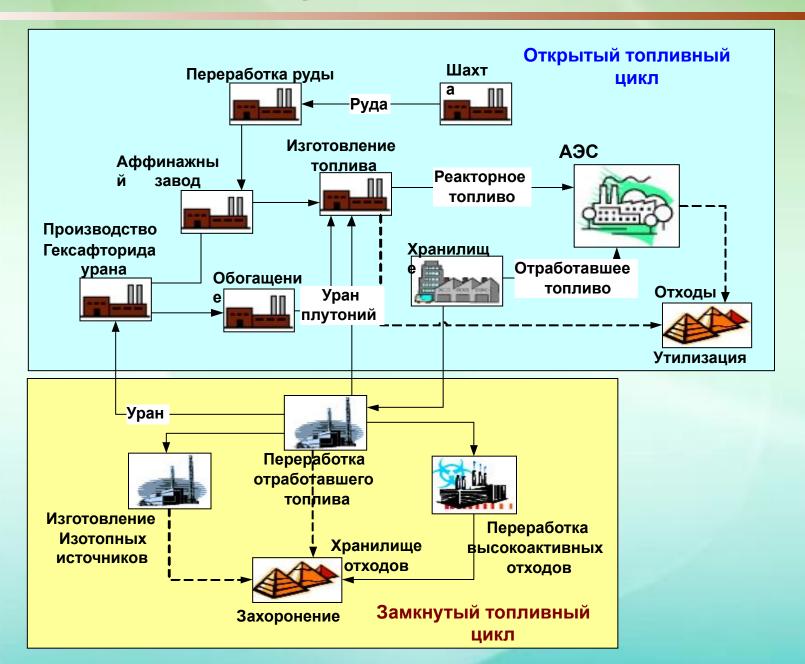
Среднесрочные задачи (2015-2030 гг.)

Расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла:

- □ Сооружение энергоблоков в соответствие с Генсхемой.
- Разработка и внедрение инновационного проекта ВВЭР третьего поколения.
- Вывод из эксплуатации и утилизация энергоблоков первого и второго поколений и замещение их установками третьего поколения.
- Формирование технологической базы для перехода к крупномасштабной ядерной энергетике.
- □ Развитие радиохимического производства по переработке топлива.
- Опытная эксплуатация демонстрационного блока АЭС с быстрым реактором и производствами топливного цикла с внутренне присущей безопасностью.
- Опытная эксплуатация прототипного блока ГТ-МГР и производство топлива для него (в рамках международного проекта).
- Сооружение объектов малой энергетики, включая стационарные и плавучие энергетические и опреснительные станции.
- Разработка высокотемпературных реакторов для производства водорода из воды.

18

Долгосрочные задачи (2030-2050 гг.)


Развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики:

- Создание инфраструктуры крупномасштабной ядерной энергетики на новой технологической платформе.
- Сооружение демонстрационного блока АЭС с тепловым реактором с торий-урановым циклом и его опытная эксплуатация.

Переход к крупномасштабной ядерной энергетике требует широкого международного сотрудничества на государственном уровне. Необходимы совместные разработки, ориентированные на нужды как национальной, так и мировой энергетики.

Спасибо за внимание!

ЯЭК: Ядерно-топливный цикл

