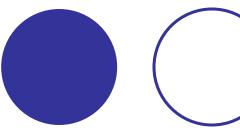
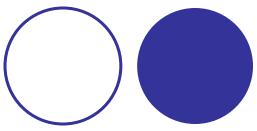

Бранспиз Ю.А.


Восточноукраинский национальный университет имени Владимира Даля




г. Луганск, ВНУ им. В. Даля, «Голубой корпус» универсальный вероятностный процесс для описания изменения параметров в системах взаимодействующих частиц

как







### Составные части дальнейшего

Аксиологическая

Основные цели автора

Методологическая

Краткая характеристика используемого метода

Тематическая

Испытания Бернулли и их приближение процессом Пуассона

Пример



#### Аксиологическая часть

- 1. «Законно» ли существование кафедр прикладной физики в университетах ?
- 2. Является ли «Прикладная физика» научной специальностью ?

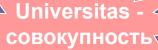


Ответ на первый вопрос зависит от ответа на второй вопрос

### Университет как высшее учебнонаучное заведение



**Университет** 


Факультет 1 Факультет 2 Факультет 3

Кафедра 1 Кафедра 2 Кафедра 3

Не выпускная

Выпускная

Университет – высшее учебное и научное заведение, в котором изучается вся совокупность дисциплин, составляющих основы научного знания по всем или отдельным отраслям знания



- 1. Организация факультетов по отраслям знаний
- 2. Организация кафедр (выпускных) по научным специальностям

### Ответ на риторический вопрос

Университет

Кафедры

Должно быть соответствие («стыковка»)

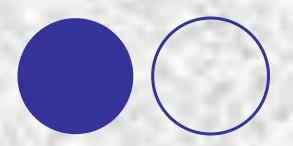
Специальности

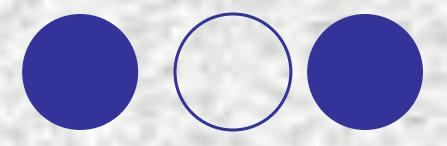
Наука

Существование кафедр
«Прикладной физики»
в университетах будет «законным»,
если будет существовать
научная специальность «Прикладная
физика»

Можно пи включить в перечень ВАК Украинь новую специальность «Прикладная физика»?




## НАУКА ЛИ ПРИКЛАДНАЯ ФИЗИКА?




#### ТАКОЙ ВОТ ВОПРОС

Пожалуй вопросом «что такое философия» можно заниматься лишь в позднюю пору, когда наступает старость, а с нею и время говорить конкретно. Действительно, библиография по нашей проблеме весьма скудна. Это такой вопрос, который задают, скрывая беспокойство, ближе к полуночи, когда больше спрашивать уже не о чем. Его ставили и раньше, все время, но слишком уж косвенно и или уклончиво, слишком искусственно, слишком абстрактно, излагая этот вопрос походя и свысока, не давая ему слишком глубоко себя зацепить. ... Слишком хотелось заниматься философией,.. не доходили до той грубости слога, когда наконец можно спросить – так что же это за штука, которой я занимался всю жизнь?

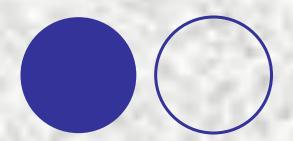
Ж. Делез, Ф. Гваттари

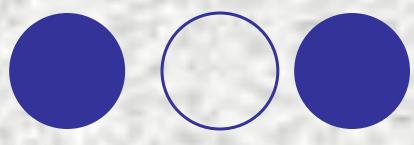




### НАУКА ЛИ ПРИКЛАДНАЯ ФИЗИКА?




Г. Галилей


#### История формирования технических наук

- 1. Описание природных процессов с целью управления ими для *практического использования в инженерных приложениях*.
- 2. Такое изменение реального объекта, которое полностью соответствует теории.
- 3. Перевод техническим путем реального объекта в идеальное состояние на основе использования открытых теорией законов природы в целях практики.

Х. Гюйгенс

Реализация замысла: на основе теории – запустить реальный природный процесс в техническом устройстве, сделав его следствием человеческой деятельности.





## Методология прикладной физики и методология физики



#### Общее и различие:

- 1. В процессе схематизации (формализации) решаемых задач.
- 2. В процессе замещения реального процесса (явления) математической моделью.
- 3. В процессе формирования новых теоретических знаний.
- 4. В характере теоретических знаний и организации их использования



### Проблемы демаркации

Прикладная физика Физика

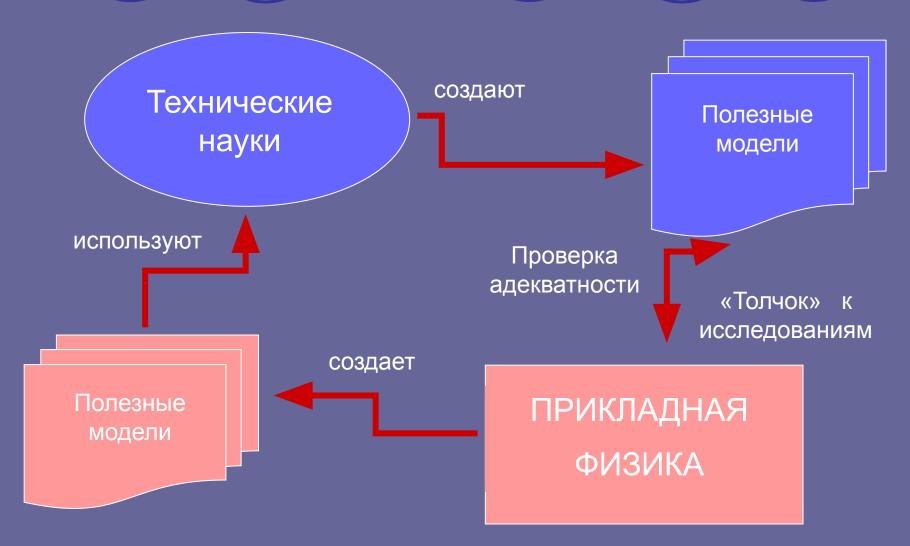
Прикладная математика



Математика

# **Целевая направленность физики** и прикладной физики

ФИЗИКА


ПОИСК ИСТИНЫ

ПРИКЛАДНАЯ ФИЗИКА

Полезные модели

Но полезные модели разрабатывают и в технических науках

# 1-й уровень взаимодействия технических наук и прикладной физики



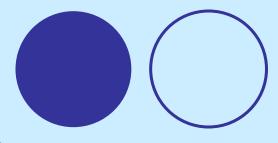
### ХАРАКТЕРНЫЕ ОСОБЕННОСТИ РАЦИОНАЛЬНЫХ РАССУЖДЕНИЙ

Применение формулировок, включающих неточно определенные понятия

Применение утверждений, допускающих частные опровержения

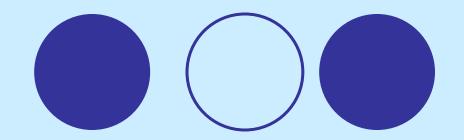
Уточнение в ходе исследования (открытость для уточнения)

Использование аналогий и соответствия


Использование доводов, основанных на частных данных экспериментов

Моделирования дискретного континуумом и континуума дискретностью


Применение практической бесконечности (знаки>> и << )

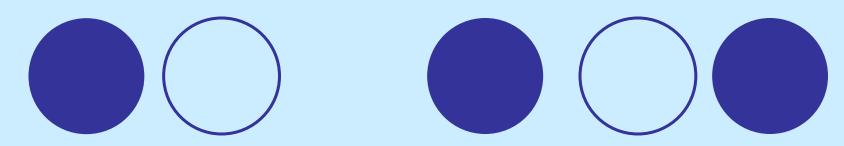

Интерполяция и экстраполяция результатов

Блехман И.И., Мышкис А.Д., Пановко Я.Г. Прикладная математика: предмет, логика, особенности подходов.— Киев: Наукова думка, 1976.



# Схема испытаний Бернулли

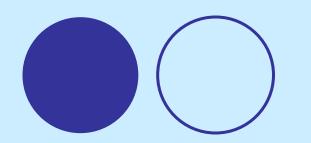




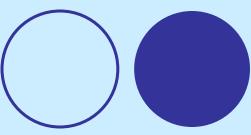

На дне глубокого сосуда Лежат спокойно и шаров. Поочередно их оттуда Таскают двое дураков.

Сия работа им приятна, Они таскают t минут, И, вынув шар, его обратно Тотчас немедленно кладут.

Ввиду занятия такого, Сколь вероятность велика, Что первый был глупей второго, когда шаров он вынул k?


В.П. Скитович




### Определение испытаний Бернулли

#### Дано:

- 1. Некоторое испытание (физический процесс).
- 2. В результате испытания событие **S** может произойти или не произойти
- 3. Вероятность события **S** в каждом из испытаний не зависит от результата остальных испытаний и равна **p**.
- 4. Осуществление события **S** «успех», не осуществление «неудача».
- Пример: 1. **S** изменение некоторого параметра в системе многих частиц в сторону увеличения («успех) или уменьшения («неудача»); каждое такое изменение испытание Бернулли.
  - 2. Увеличение некоторого параметра в системе многих частиц на величину менее («успех») или более («неудача») данной.

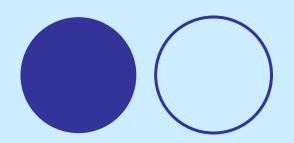




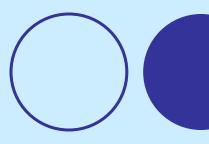


### Закономерности испытаний Бернулли

1. Вероятность того, что в **n** испытаниях Бернулли событие **S** произойдет **k** раз определяется равенством


 $C_n^k p^k (1-p)^{n-k}$ 

где  $C_n^{k}$  - число сочетаний из  $\mathbf{n}$  по  $\mathbf{k}$ .


2. Пусть **n** стремится к бесконечности и **p** $\to$ 0. Пусть также имеет место предел **np** $\to$ **λ>0.** Тогда для любого **k>0** вероятность получить **k** «успехов» в **n** испытаниях схемы Бернулли с вероятностью успеха **p** стремится к величине  $\lambda^k e^{-\lambda}/k!$ 

То есть, имеет место предельный переход

$$C_n^k p_n^k (1-p_n)^{n-k} \longrightarrow \frac{\lambda^k}{k!} e^{-\lambda}.$$







### Испытания Бернулли как процесс Пуассона

#### Определение процесса Пуассона:

Вероятность того, что в интервале времени (  $t,t+\Delta t$  ) произойдет изменение состояния равна  $\lambda \Delta t$  .


Тогда вероятность того, что в момент времени  $t \ge 0$  система находится в состоянии x (x = 0, 1, 2, ...) равна

Эту вероятность можно интерпретировать и как вероятность того, что за время *t* произойдет *x* изменений.

$$P_{x}(t) = \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}$$

Если  $\lambda = \lambda(x,t)$ , то получаем процесс рождения и гибели

Для любого физического процесса всегда можно подобрать соответствующий вид зависимости  $\lambda = \lambda(x,t)!$ 



### Уравнение Чепмена-Колмогорова для изменения значения параметра х

$$P(x_0, t + \tau) = P(x_0, t) \cdot [1 - \alpha(x_0) - \beta(x_0)] + P(x_0, t) \cdot [1 - \alpha(x_0) - \beta(x_0)] + P(x_0, t) \cdot \beta(x_0) + P(x_0, t) \cdot \alpha(x_0)$$

(Y-K)

 $x_0$  - значение параметра X в момент времени t

- $\alpha(x)$  вероятность увеличения значения параметра X
- $\beta(x)$  вероятность уменьшения значения параметра X

Это уравнение - уравнение полной вероятности



### Общее уравнение для плотности вероятности изменения значения параметра х

$$\frac{\partial \rho}{\partial t} + \frac{\tau}{2!} \cdot \frac{\partial^2}{\partial t^2} [\rho(x, t)] + \dots =$$



# Конкретизация вида уравнения для плотности вероятности изменения значения параметра

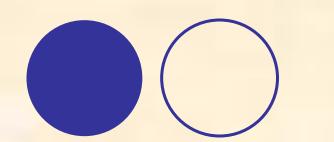
Условие для интервала времени наблюдения за изменением параметра x

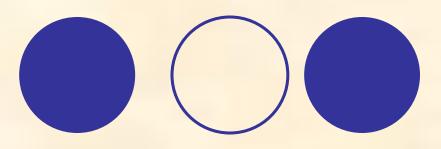
$$\frac{\partial \rho}{\partial t} = -\frac{h}{\tau} \cdot \frac{\partial \rho(\alpha - \beta)}{\partial x} + \frac{h^2}{2 \cdot \tau} \cdot \frac{\partial^2 \rho(\alpha + \beta)}{\partial x^2} - \frac{h^3}{3!} \cdot \frac{\partial^3 \rho(\alpha - \beta)}{\partial x^3} + \dots$$
 (\*)

Нет бесконечного числа слагаемых слева

 $\tau \rightarrow 0$ 

Предельный переход применим не для всех процессов





### Конкретизация вида уравнения для плотности вероятности изменения значения параметра

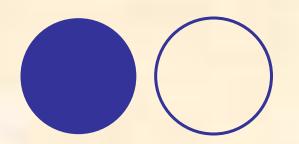
Ограничение числа слагаемых в правой части уравнения (\*) связано с установлением взаимосвязи между характеристиками изменения параметра х: h и  $\tau$ 

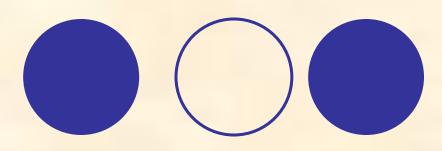
Порядок малости **т**определяет порядок малости h

Порядок малости не может превышать порядок малости величины  $h^{n}$ ,  $n \ge 3$ 






# О двух способах конкретизации вида рассматриваемого уравнения


$$n = 1$$
  $\lim_{\tau \to 0} \left(\frac{h}{\tau}\right) = const$ 

$$\frac{\partial \rho}{\partial t} = -\frac{h}{\tau} \cdot \frac{\partial}{\partial x} \left[ \rho(x, t) \cdot \left[ \alpha(x) - \beta(x) \right] \right]$$

$$n = 2$$
  $\lim_{\tau \to 0} \left(\frac{h^2}{\tau}\right) = const$ 

$$\frac{\partial \rho}{\partial t} = -\frac{h}{\tau} \cdot \frac{\partial}{\partial x} \left[ \rho(x, t) \cdot \left[ \alpha(x) - \beta(x) \right] \right] + \frac{h^2}{2 \cdot \tau} \cdot \frac{\partial^2}{\partial x^2} \left[ \rho(x, t) \cdot \left[ \alpha(x) + \beta(x) \right] \right]$$



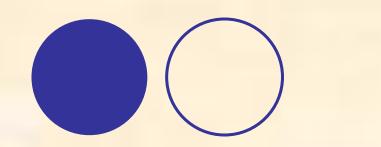


### Реализация одного из способов

$$n = 2$$

$$\alpha(x) + \beta(x) = 1$$

$$\frac{\partial \rho}{\partial t} = -\frac{h}{\tau} \cdot \frac{\partial}{\partial x} \left[ \rho(x, t) \cdot \left[ \alpha(x) - \beta(x) \right] \right] + \frac{h^2}{2 \cdot \tau} \cdot \frac{\partial^2}{\partial x^2} \left[ \rho(x, t) \right]$$


$$\alpha(x) - \beta(x) = C_{\alpha-\beta} = const$$


$$\frac{h}{\tau} \cdot C_{\alpha-\beta} = V_{cp}$$

$$h^{2}$$

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \left[ V_{cp} \cdot \rho(x, t) \right] + D \cdot \frac{\partial^2}{\partial x^2} \left[ \rho(x, t) \right]$$

Уравнение диффузии мс дрейфом (Эйнштейна-Смолуховского)

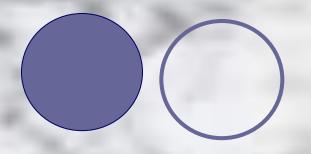




### К сравнению способов конкретизации вида уравнения для плотности вероятности случайного изменения значения параметра х

$$\frac{\partial \rho}{\partial t} = -V_{cp} \cdot \frac{\partial \rho(x,t)}{\partial x}$$

1-й способ описания (процесс Пуассона)


$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \Big[ V_{cp} \cdot \rho(x,t) \Big] + D \cdot \frac{\partial^2}{\partial x^2} \Big[ \rho(x,t) \Big] \qquad \text{(диффузия с дрейфом)}$$

Соответствующим подбором соотношений констант, характеризующих два способа описания случайного изменения параметра х, можно добиться, что средние и дисперсии этих способов будут одинаковы



Доклад закончен.

Благодарю за внимание



