ГЛАВА V. ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

НИУ МЭИ Кафедра физики им. В. А. Фабриканта

<u>I. Нуклон</u>

Ядро атома состоит из протонов и нейтронов – **нуклонов**. Это одна частица в разных квантовых состояниях.

	Протон	Нейтрон
Электрический заряд		
Масса покоя		
Спин		
Магнитный момент		
Время жизни (период полураспада)		

II. Состав ядра и его характеристики

Заряд ядра:

$$Q = Ze$$

(Z – число протонов в ядре – порядковый номер элемента в таблице Менделеева)

Масса ядра:

$$m = Am_1$$

$$A=Z+N$$

(A - массовое число, N - число нейтронов)

$$m_1 = \frac{m \binom{12}{6} \text{C}}{12} = 1 \text{ a. e. м.} = 1,6606 \cdot 10^{-27} \text{кг} = 931,50 \text{ МэВ}$$

– атомная единица массы

Обозначение ядра: ${}^{A}_{Z}X$

Пример:

$$^{40}_{19}$$
K: $A = 40$, $Z = 19$, $N = 40 - 19 = 21$.

Изотолы – ядра одного химического элемента, имеющие разную массу (разные A при одинаковом Z).

Пример:

Изотопы водорода

1_1
H – протий, $T \to \infty$ 2_1 H = 2_1 D – дейтерий, $T \to \infty$ 3_1 H= 3_1 T – тритий, $T=12$ лет

 $\it Uзобары - ядра одинаковой массы, имеющие разный заряд (разные <math>\it Z$ при одинаковом $\it A$).

Примеры:

$$^{15}_{7}$$
N и $^{15}_{7}$ O, $^{3}_{1}$ H и $^{3}_{2}$ He

III. Размер ядра

$$m P$$
адиус ядра $m r_0$

$$r_0 = (1,2 \div 1,3)\sqrt[3]{A} \, \phi$$
м

$$r \sim 10^{-10} \text{M} \Longrightarrow r_0 \approx \frac{r}{10^5}$$

$$V = \frac{4}{3}\pi r_0^3 \approx 9,2A \cdot 10^{-45} \text{m}^3$$

$$\rho \approx 1.3 \cdot 10^{17} \, \frac{\text{K}\Gamma}{\text{M}^3}$$

IV. Спин ядра

Спин ядра I равен сумме спинов и орбитальных моментов нуклонов.

В основном состоянии стабильных ядер $I \le 9/2$. Моменты импульса большинства нуклонов в ядре компенсируют друг друга, располагаясь антипараллельно. У всех ядер с чётными числами нуклонов в основном состоянии I=0.

V. Масса и энергия связи ядра

 m_n – масса нуклона, m – масса ядра, $m_{\rm H}$ – масса атома водорода; $m \neq \sum m_n!$

Энергия связи $W_{\rm cs}$ — работа, которую нужно совершить для полного разделения ядра на свободные нуклоны.

Полная энергия ядра $W = mc^2$;

$$W_{\text{CB}} = \sum m_n c^2 - mc^2 = [Zm_p + (A - Z)m_n - m]c^2$$

или $W_{\rm cB} = [Zm_{\rm H} + (A-Z)m_n - m]c^2$ с учётом массы электронов.

$$\Delta = Zm_p + (A - Z)m_n - m$$

Удельная энергия связи – энергия связи ядра, приходящаяся на один нуклон:

 $w_{\rm cb} = \frac{W_{\rm cb}}{A}$

Тяжёлым ядрам энергетически выгодно *делиться* (**атомная энергия**), а лёгким – *сливаться* (**термоядерная энергия**).

Примеры:

При делении ядра $^{235}_{92}$ U выделяется \sim 200 МэВ.

При синтезе ядер гелия ${}^2_1D + {}^3_1T \longrightarrow {}^4_2$ Не выделяется \sim 17,6 МэВ.

Зависимость удельной энергии связи от массового числа

VI. Ядерные силы

Сильное взаимодействие

Свойства ядерных сил

- **1)** Притяжение; ядерные силы >> кулоновских сил отталкивания
- **2) Короткодействие** $(r \sim 10^{-15} \,\mathrm{M})$. На расстояниях >> r притяжение нуклонов сменяется кулоновским отталкиванием.
- **3)** Зарядовая независимость: силы взаимодействия *p-p*, *n-n* и *p-n* одинаковы.
- 4) Нецентральность: ядерные силы не являются центральными.
- **5) Насыщение**: каждый нуклон в ядре взаимодействует с ограниченным числом нуклонов.
- 6) Взаимодействие нуклонов наиболее эффективно, если их спины сонаправлены.

VII. Виртуальные частицы

Частицы-переносчики – виртуальные **π-мезоны**.

Виртуальные частицы – частицы, испускание и поглощение которых происходит с кажущимся нарушением ЗСЭ.

Соотношения неопределённостей Гайзенберга:

$$\Delta W \Delta t \geq \frac{\hbar}{2} \Rightarrow \Delta t \sim \frac{\hbar}{W}, W = m_{\pi}c^{2},$$

где m_{π} – масса π -мезона; m_{π} ~270 m_e .

Если поблизости от нуклона нет других сильновзаимодействующих частиц, то все испущенные нуклоном л-мезоны поглощаются этим же нуклоном. Одиночный нуклон окружён т. н. «нуклонной шубой». Когда два нуклона сближаются и их мезонные шубы начинают соприкасаться, создаются условия для обмена виртуальными мезонами.

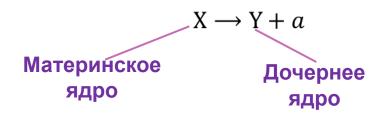
VII. Модели атомного ядра

Атомное ядро – система многих частиц. Квантовомеханическая задача многих частиц сложна для решения.

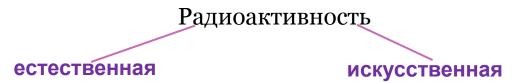
1. Капельная модель

Ядро – капля заряженной несжимаемой жидкости с очень высокой плотностью. Эта модель позволяет вывести формулу для энергии связи ядра; обусловливает процесс деления ядер.

2. Оболочечная модель


Каждый нуклон движется в поле остальных нуклонов ядра. Энергетические уровни системы заполняются с учётом принципа Паули и группируются в **оболочки**.

Эта модель объясняет спины и магнитные моменты основных и возбуждённых с состояний ядер.

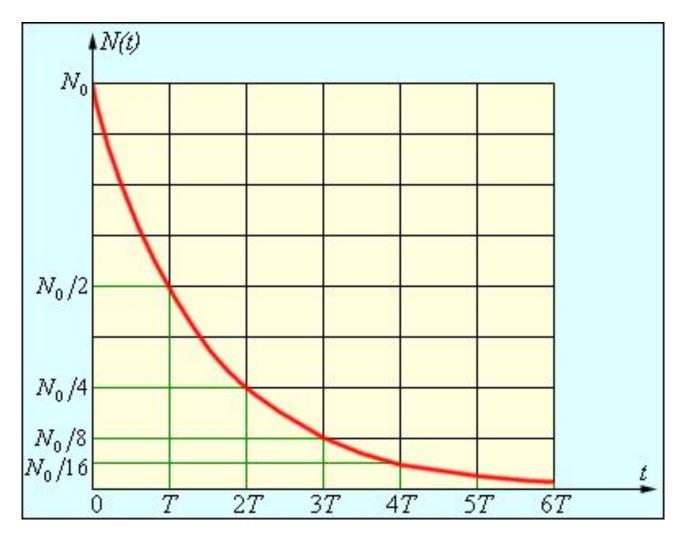

Полностью заполненные оболочки образуют особо устойчивые структуры:

Z, N или оба этих числа = 2, 8, 20, 50, 82, 126 — магические числа.

Радиоактивность – явление самопроизвольного распада атомных ядер с испусканием одной или нескольких частиц. Самопроизвольно распадающиеся ядра называются **радиоактивными**.

Радиоактивный распад происходит с выделением энергии: $m_{\rm X} > m_{\rm Y} + m_a$.

I. Закон радиоактивного распада


Число ядер dN, распадающихся за малый промежуток времени dt, пропорционально числу ядер N и dt:

$$-dN = \lambda N dt$$

 λ – **постоянная распада** – характеристика радиоактивного вещества; $[\lambda] = c^{-1}$

$$N=N_0e^{-\lambda t}$$
 – основной закон радиоактивного распада

 N_0 – число ядер при t=0; N – число нераспавшихся ядер в момент времени t

Активность препарата – число ядер, распадающихся за единичный промежуток времени:

$$\left| \frac{dN}{dt} \right| = \lambda N \qquad \qquad \boxed{A = \lambda N}$$

$$[A] = Бк (беккерель) = \frac{\text{распад}}{c}$$

Внесистемная единица: **кюри** (Ки); 1 Ки = $3.7 \cdot 10^{10}$ Бк

Удельная активность – активность в расчёте на единичную массу радиоактивного препарата:

$$a = \frac{A}{m}$$
 $[a] = \frac{Б\kappa}{\kappa \Gamma}; \frac{K\mu}{\kappa \Gamma}$

Период полураспада T – время, за которое распадается половина первоначального числа радиоактивных ядер.

$$\frac{N_0}{2} = N_0 e^{-\lambda t} \Rightarrow T = \frac{\ln 2}{\lambda} = \frac{0,693}{\lambda}$$

Среднее время жизни т:

$$\tau = \frac{1}{N_0} \int_0^\infty t \, dN(t) = -\frac{1}{N_0} \int_0^\infty \lambda N \, dt = -\frac{N_0}{N_0} \int_0^\infty \lambda e^{-\lambda t} t \, dt = \frac{1}{\lambda} \int_0^\infty z e^z \, dz = \frac{1}{\lambda}$$

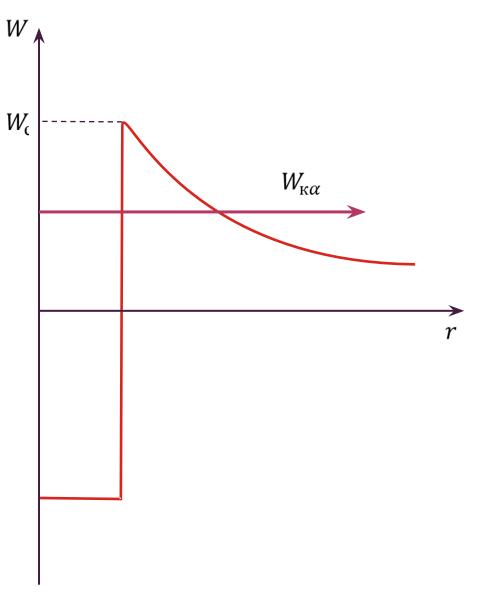
 $(здесь z = -\lambda t)$

$$\tau = \frac{1}{\lambda}$$

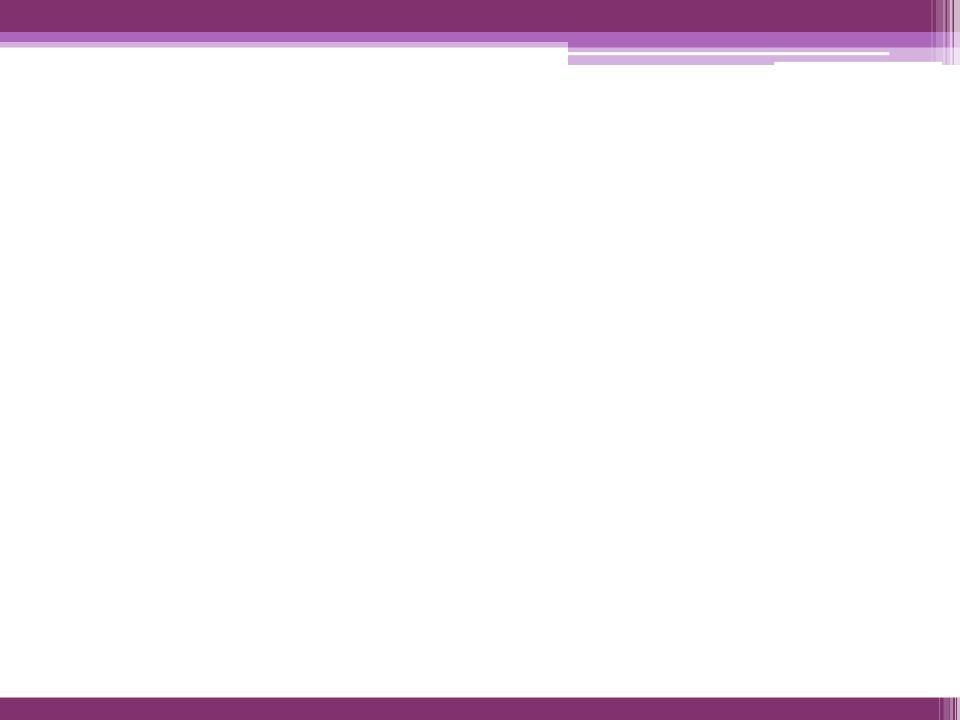
$$T = \tau \ln 2$$

<u>II. α-распад</u>

 α -частица – ядро ${}_{2}^{4}$ He.


α-распад – самопроизвольное испускание ядром α-частицы:

$${}_{Z}^{A}X \longrightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$$


α-частицы испускают только тяжёлые ядра (Z>82). Энергия α-частицы $W_{\kappa\alpha}{\sim}1$ МэВ.

Пример:

230
Th $\xrightarrow{\alpha}$ 226 88Ra

Покидая ядро, α -частица преодолевает кулоновский потенциальный барьер, высота которого $W_{\rm c} > W_{\rm k\alpha}$. α -распад происходит благодаря туннельному эффекту.

3) K-захват – захват ядром электрона K-оболочки

$$_{Z}^{A}X + _{-1}^{0}e^{-} \longrightarrow _{Z-1}^{A}Y + \nu_{e}$$

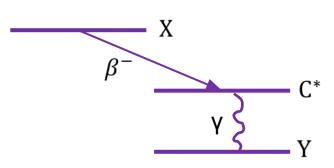
Пример:

$${}^{7}_{4}\text{Be} + {}^{0}_{-1}\text{e} \xrightarrow{\beta^{+}} {}^{7}_{3}\text{Li} + \nu_{e}$$

β-распад – внутринуклонный, а не внутриядерный процесс. Он обусловлен следующими процессами:

 β^- -распад: $n \longrightarrow p + e^- + \tilde{\nu}_e$

 β^+ -распад: $p \rightarrow n + e^+ + \nu_e$


K-захват: $p + e \rightarrow n + \nu_e$

IV. у-радиоактивность

γ-радиоактивность – испускание γ-квантов возбуждённым ядром при переходе его в основное состояние.

$$W_{\gamma} = 10 \ \kappa э \text{B} \div 5 \ \text{МэВ}$$

Спектр ү-излучения – дискретный.

Ядерная реакция — процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, сопровождающийся преобразованием ядер:

$$a + X \rightarrow b + Y$$
 или $X(a, b)Y$

a, b — чаще всего n, p, d, α, γ . Ядерная реакция может иметь несколько **каналов**, которым соответствуют разные вероятности.

I. Выход ядерной реакции

Эффективное сечение реакции о – площадь сечения ядра X, попадая в которую, налетающая частица вызывает реакцию.

Если мишень **тонкая**, т. е. ядра не перекрывают друг друга, то доля площади S мишени, перекрытая ядрами X, равна $\frac{\sigma nS}{S}$, где n — число ядер на единицу площади мишени.

Вероятность реакции - выход реакции

$$\frac{\Delta N}{N} = P = \sigma n$$

Если мишень не тонкая, то $P = 1 - e^{-\sigma n}$.

$$\sigma \sim 10^{-28} \text{m}^2$$
; $[\sigma] = \text{барн} = 1 \cdot 10^{-28} \text{m}^2$.

II. Типы ядерных реакций

1) Реакции, вызываемые медленными частицами:

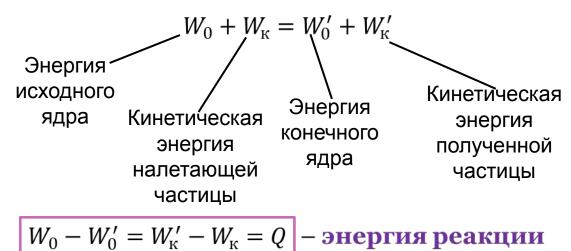
$$a + X \longrightarrow C^* \longrightarrow Y + b$$
,

 C^* – **составное (промежуточное) ядро**. C^* находится в возбуждённом состоянии, время жизни $\tau \sim 10^{-14}$ с.

2) Реакции, вызываемые **быстрыми** частицами ($W_a \ge 10^2 \text{МэВ}$):

$$a + X \longrightarrow Y + b$$
,

Это прямая реакция.


Пример:

Синтез трансурановых химических элементов

$$^{238}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{239}_{92}$ U $\xrightarrow{\beta^{-}}$ $\xrightarrow{239}_{93}$ Np $\xrightarrow{\beta^{-}}$ $\xrightarrow{\beta^{-}}$ $\xrightarrow{239}_{94}$ Pu $\xrightarrow{\alpha}$ $\xrightarrow{235}_{92}$ U

Здесь имеет место резонансный захват теплового нейтрона.

III. Энергия реакции

$$A(a,b)B + Q$$

Экзоэнергетическая реакция: Q > 0

Эндоэнергетическая реакция: Q < 0

$$Q = \begin{cases} [(m_a + m_A) - (m_b + m_B)]c^2 \\ (\Delta_a + \Delta_A) - (\Delta_b + \Delta_B) \end{cases}$$

IV. Реакция деления

Реакция типа 1 – ядро проходит через ряд промежуточных состояний.

$$^{235}_{92}$$
U + $^1_0n \rightarrow ^{140}_{55}$ Cs + $^{94}_{37}$ Rb + $2^1_0n + Q$ (один из каналов), $Q \approx 200$ МэВ

При одном налетающем нейтроне образуются два. Если имеются другие исходные ядра, то возможна **цепная реакция** с лавинным возрастанием числа нейтронов.

Т. к. число выходящих из образца нейтронов пропорционально площади поверхности образца $\sim R^2$ (R — радиус образца), а число рождающихся нейтронов пропорционально объёму образца (R^3), то существует **критический радиус** (а также **критическая масса**): при $R > R_{\rm кр}$ начинается цепная реакция.

Для $^{235}_{92}$ U $R_{\rm Kp}=6$ см, $m_{\rm Kp}=20$ кг.

При превышении этих параметров происходит **неуправляемая реакция**, т. е. взрыв.

Для осуществления **управляемой реакции** нужно поддерживать число нейтронов внутри образца постоянным.

V. Реакция синтеза

1) Протон-протонный цикл

$${}_{1}^{1}p + {}_{1}^{1}p \longrightarrow {}_{1}^{2}D + {}_{1}^{0}e^{+} + {}_{0}^{0}\nu_{e}$$

$${}_{1}^{2}D + {}_{1}^{1}p \longrightarrow {}_{2}^{3}He + \gamma$$

$${}_{2}^{3}He + {}_{2}^{3}He \longrightarrow {}_{2}^{4}He + {}_{1}^{2}p$$

2) Углеродно-азотный цикл

$${}^{12}_{6}C + {}^{1}_{1}p \rightarrow {}^{13}_{7}N + \gamma$$

$${}^{13}_{7}N \rightarrow {}^{13}_{6}C + {}^{0}_{1}e^{+} + {}^{0}_{0}\nu_{e}$$

$${}^{13}_{6}C + {}^{1}_{1}p \rightarrow {}^{14}_{7}N + \gamma$$

$${}^{14}_{7}N + {}^{1}_{1}p \rightarrow {}^{15}_{8}O + \gamma$$

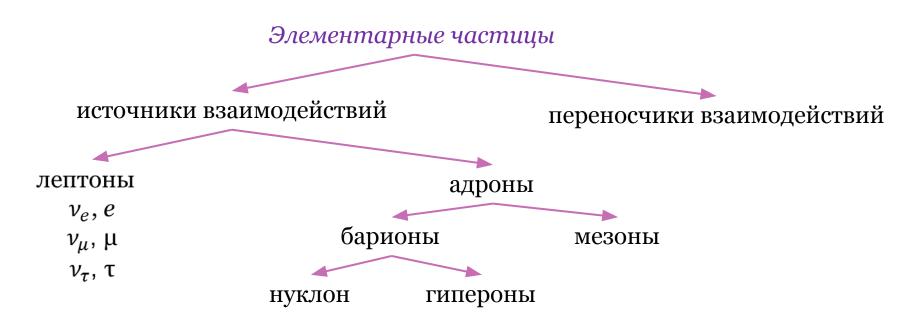
$${}^{15}_{8}O \rightarrow {}^{15}_{7}N + {}^{0}_{1}e^{+} + {}^{0}_{0}\nu_{e}$$

$${}^{15}_{7}N + {}^{1}_{1}p \rightarrow {}^{12}_{6}C + {}^{4}_{2}He$$

Результат обоих циклов — превращение 4 протонов в ядро He с рождением 2 позитронов и γ -излучения. На 1 ядро He Q=26,8 МэВ.

$$^{2}_{1}D + ^{3}_{1}T \longrightarrow ^{4}_{2}He + ^{1}_{0}n + Q; Q = 17,4 M \ni B$$
 $^{2}_{1}D + ^{2}_{1}D \longrightarrow ^{3}_{1}T + ^{1}_{1}p$
 $^{2}_{1}D + ^{2}_{1}D \longrightarrow ^{3}_{2}He + ^{1}_{0}n$

Реакция синтеза протекает в плазме.


Требования к осуществлению реакции синтеза:

- минимальная температура;
- \square минимальная величина $n\tau$, где n- концентрация исходных частиц , $\tau-$ время удержания плазмы

Для реакции 3) $n\tau > 10^{16}$, $T > 10^9$ К.

I. Классификация элементарных частиц

Элементарные частицы – частицы, ведущие себя как безструктрурные.

II. Фундаментальные взаимодействия

Взаимодействие	Радиус	Относ. величина	Источники	Переносчики
Гравитационное	∞		все	гравитон
Электромагнитное	∞		лептоны, адроны	фотон
Слабое			лептоны, адроны	
Сильное		1	адроны	глюон

III. Античастицы

Каждой (почти каждой) частице соответствует своя античастица.

Античастица отличается от частицы только знаками зарядов (электрического, лептонного, барионного, странности). Масса, спин и время жизни частицы и античастицы одинаковы.

Истинно нейтральная частица – та, которая совпадает со своей античастицей.

Примеры:

Фотон (ү), π^0 -мезон, η^0 -мезон

Аннигиляция – превращение пары частица-античастица в истинно нейтральные частицы.

Обратный процесс – рождение пары.

Процессы аннигиляции и рождения пары происходят с соблюдением законов сохранения.

Пример:

$$e^+ + e^- \rightarrow 2\gamma$$

IV. Законы сохранения

Законы сохранения

точные

(выполняются для всех фундаментальных взаимодействий)

3C9

ЗСИ

ЗСМИ

3C93

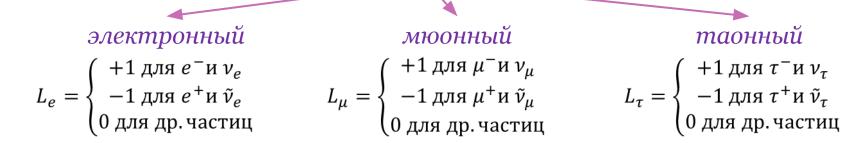
ЗС лептонных зарядов

приближённые

(выполняются в некоторых взаимодействиях)

ЗС барионного заряда

ЗС чётности


3С изоспина

ЗС странности

ЗС очарования и красоты

1. Лептонные заряды

Примеры:

$$n \rightarrow p + e^- + \tilde{\nu}_e, p + \tilde{\nu}_\mu \rightarrow n + \mu^+$$

Закон сохранения лептонных зарядов: для всех процессов лептонные заряды системы сохраняются:

$$L_e = {\rm const}, L_\mu = {\rm const}, L_\tau = {\rm const}$$

2. Барионный заряд

$$B = egin{cases} +1 \ ext{для барионов} \ -1 \ ext{для антибарионов} \ 0 \ ext{для др. частиц} \end{cases}$$

Закон сохранения барионного заряда: для всех процессов барионный заряд системы сохраняется:

$$B = const$$

Пример:

$$p+p \longrightarrow p+p+p+\tilde{p}$$
 ——— антипротон

3. Странность

Странность S — квантовое число, отличное от о для некоторых гиперонов и мезонов, распадающихся за счёт слабого взаимодействия.

Закон сохранения странности: в электромагнитном и сильном взаимодействиях странность сохраняется, а в слабом взаимодействии может изменяться на ± 1 .

Пример:

$$p+p o p + \Lambda^0 + K^+$$
 мезон, $S=+1$ лямбда-гиперон, $S=-1$

4. Шарм (очарование) C, красота (прелесть) b, истина t

Эти квантовые числа — аналог странности S.

Законы сохранения шарма, красоты и истины: в электромагнитном и сильном взаимодействиях шарм, красота и истина сохраняются, а в слабом взаимодействии могут изменяться на ± 1 .

5. Изоспин

Адроны, близкие по физическим свойствам, можно разбить на группы – изотопические мультиплеты.

Характеристики частиц в изотопическом мультиплете:

примерно равные m

равные B, s, S

различный Q

равный изотопический спин (изоспин) T различные проекции изотопического спина T_z

Общее число частиц в мультиплете: 2T + 1 Частице с большим Q соответствует большее T_z .

Пример:

Нуклон: p + n

$$T = \frac{1}{2}$$
 $T_z(p) = +\frac{1}{2}$ $T_z(n) = -\frac{1}{2}$

V. Стабильные и долгоживущие адроны

Мезоны

Название частицы	Обозна чение	Антича стица		Q	В	S	Время жизни, с	Основные каналы распада
Пион			139,6 135,0	+1 0	0 0	0 0		
Каон			493,7 497,7 497,7	+1 0 0	0 0 0	0 +1 +1		
η-мезон			548,8	0	0	0		

Барионы

Название частицы	Обозна чение	Антича стица		Q	В	S	Время жизни, с	Основные каналы распада
Протон	p		938,3	+1	+1	0	Стабилен	
Нейтрон	p		938,3	0	+1	0	920	
Лямбда			1115,6	0	+1			
Сигма			1189,4 1192,5 1197,3		+1 +1 +1			
Кси			1315 1321		+1 +1			
Омега			1672		+1			

VI. Лептоны

Название частицы	Обозна чение	Античаст ица		Электр. заряд <i>Q</i>	Время жизни, с	Основные каналы распада
Электрон			0,511		Стабилен	
Электронное нейтрино			0	0	Стабильно	
Мюон			105,7			
Мюонное нейтрино			0	0	Стабильно	
т-лептон			1784,0			
т-нейтрино			0	0	Стабильно	

§5. Кварковая модель адронов

І. Кварки и их характеристики

Все адроны состоят из сильновзаимодействующих частиц – **кварков**. Кварки не наблюдаются в свободном состоянии – **конфайнмент**.

Характеристики кварков

Для всех кварков: $cnuh s = \frac{1}{2}$, барионный заряд $B = \frac{1}{3}$

Обозначение (аромат) кварка	Электр. заряд <i>Q</i>	Странность S	Шарм С	Красота <i>b</i>	Истина <i>t</i>
u		0	0	0	0
d		0	0	0	0
S			0	0	0
c		0	+1	0	0
b		0	0	+1	0
t		0	0	0	+1

§5. Кварковая модель адронов

Антикварки отличаются от кварков знаками Q, B, S, C, b, t.

II. Цвет

Каждый кварк характеризуется ещё одним квантовым числом – **цвет**. Антикварк имеет цвет, дополнительный к цвету кварка.

Цвет кварка	Цвет антикварка		
Жёлтый	Фиолетовый		
Синий	Оранжевый		
Красный	Зелёный		

III. Взаимодействие кварков и образование адронов

Сильное взаимодействие между кварками осуществляется через обмен глюонами.

Глюон характеризуется цветом. При испускании и поглощении глюона кварк не меняет аромат, но меняет цвет.

Мезон = кварк + антикварк Барион = 3 кварка

Принцип бесцветности адронов: возможны только те сочетания кварков разных цветов, смесь которых бесцветна.

§5. Кварковая модель адронов

Примеры:

 π^+ : $u\tilde{d}$ ($\downarrow\uparrow$) p: uud($\downarrow\uparrow\downarrow$)

 π^- : $\tilde{u}d$ ($\downarrow\uparrow$) n: udd ($\downarrow\uparrow\downarrow$)

Распад лептонов и кварков, несохранение ароматов и вследствие этого нарушение закона сохранения барионного заряда, странности и др. происходит благодаря слабому взаимодействию.

Пример:

Распад нейтрона $n \longrightarrow p + e^- + \tilde{v}_e$

сводится к β -распаду d-кварка

$$d \rightarrow u + e^- + \tilde{v}_e$$

Использованная литература

- 1. Окунь Л. Б. Элементарное введение в физику элементарных частиц. 2-е изд., испр. и доп. М.: ФИЗМАТЛИТ, 2006.
- 2. Джанколи Д. Физика: В 2-х т. Т. 2: Пер. с англ. М.: Мир, 1989.
- 3. Кобзарев И. Ю., Манин Ю. И. Элементарные частицы. Диалоги физика и математика. 2-е изд., испр. М.: ФАЗИС, 2000.
- 4. Мухин К. Н. Занимательная ядерная физика. 3-е изд., перераб. и доп. М.: Энергоатомиздат, 1985.
- 5. Савельев И. В. Курс физики: Учеб.: В 3-х т. Т. 3: Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. М.: Наука. Гл. ред. физ.-мат. лит., 1989.
- 6. Физические величины: Справочник. Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.