Органическая химия Скорость химических реакций

Определение:

• Скорость химической реакции — это изменение количества реагирующего вещества в единицу времени в единице объёма.

$$r = \frac{1}{V} \times \frac{\Delta v}{\Delta \tau} = \frac{\Delta C}{\Delta \tau}$$

r — скорость химической реакции,

V – объём м³, Δv – количество вещества в молях,

 Δau – промежуток времени сек.,

 ΔC – молярная концентрация ($\Delta v/V$)

Пояснение:

• Иными словами, скорость реакции — это изменение концентрации одного из реагирующих веществ в единицу времени.

В реакции: $N_2 + 3H_2 = 2NH_3$, 1 моль N_2 вступает в реакцию с 3 молями H_2 и получается 2 моля NH_3 .

$$r(N_2) = \frac{1}{3}r(H_2) = \frac{1}{2}r(NH_3)$$

Таким образом, скорость химической реакции можно вычислить по любому участнику реакции на основании коэффициентов уравнения реакции

Фактор внутренних химических связей:
Природа реагирующих веществ (прочность химических связей в веществе)

<u>def</u>: химическая реакция – процесс перераспределения химических связей между атомами, в результате которого образуются новые вещества.

Чем прочнее внутренние химические связи в веществе, тем труднее оно вступает в реакцию.

• Фактор температуры (энергии активации):

<u>def</u>: Энергия активации – энергия промежуточного состояния, выше которого суммарная энергия реагирующих частиц больше энергии ещё не вступивших в реакцию реагентов.

В промежуточном состоянии старые химические связи уже разорваны, а новые, пока ещё не образованы.

Для реакций, происходящих при в диапазоне 273-373 градусов кельвина, выполняется правило Вант-Гоффа: при повышении температуры на 10 градусов — скорость реакции увеличивается в 2-4 раза.

• Правило Вант-Гоффа:

$$r_{T_2} = r_{T_1} \gamma^{\frac{(T_2 - T_1)}{10}}$$

Здесь r_{T2} и r_{T1} — скорости реакции соответственно при температурах T_2 и T_1

 γ – коэффициент Вант-Гоффа (или температурный коэффициент скорости реакции) Для каждой химической реакции γ своя.

• Фактор Катализатора:

<u>def</u>: Катализатор — промежуточный реагент, понижающий энергию активации химической реакции, за счёт образования промежуточных соединений с меньшими затратами энергии.

<u>def</u>: Катализатор — вещества или внешние воздействия (например ультразвук или ионизирующие излучения), которые ускоряют различные химические и физические процессы (например полимеризация) в заданном направлении.

Основная функция катализатора — образовывать с исходными веществами более реакционно-способные промежуточные соединения и комплексы, позволяющие снизить энергию активации химической реакции.

• Фактор Ингибитора:

def: Ингибитор — вещество, замедляющие или предотвращающие течение различных химических реакций: окисления, полимеризации, коррозию металлов и др. Например, гидрохинон — ингибитор окисления бензальдегида; соединения технеция — ингибитор коррозии сталей.

Основная функция ингибитора — образовывать с исходными веществами менее реакционно-способные промежуточные соединения и комплексы, позволяющие увеличить энергию активации химической реакции.

• Фактор Концентрации (Закон действующих масс)

def: Закон действующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии. Закон действующих масс сформулирован в 1864—1867 гг. К. Гульдбергом и П. Вааге. Согласно этому закону скорость, с которой вещества реагируют друг с другом, зависит от их концентрации. Закон действующих масс используют при различных расчетах химических процессов. Он позволяет решить вопрос, в каком направлении возможно самопроизвольное течение рассматриваемой реакции при заданном соотношении концентраций реагирующих веществ, какой выход нужного продукта может быть получен.

• Фактор Концентрации (Закон действующих масс)

def: Константа равновесия — постоянная величина, полученная из отношения произведения концентраций продуктов реакции (в степенях их коэффициентов в уравнении реакции) к произведению концентраций реагентов (также в степенях их коэффициентов в уравнении реакции). Данная константа не зависит от исходных концентраций веществ и реакционной смеси. Пример:

$$2SO_2 + O_2 \Leftrightarrow 2SO_3 + 197$$
кДж

$$const = \frac{C_{[SO_3]}^2}{C_{[SO_2]}^2 C_{[O_2]}}$$

Скорость реакции, заключение:

- Итак: скорость химической реакции определяется как изменение молярной концентрации одного из реагирующих веществ за единицу времени. Скорость химической реакции — величина всегда положительная.
- Факторы, влияющие на скорость реакции:
 - а) сила внутренних химических связей
 - б) температура
 - в) катализаторы
 - г) ингибиторы
 - д) концентрация