
ФИЗИОЛОГИЯ И БИОХИМИЯ МИКРООРГАНИЗМОВ

Таблица 1. Макроэлементы, их источники и функции в бактериальной клетке.

Элемент	% от сухого веса	Источник	Функция
Углерод	50	органические соединения или CO ₂	Основной компонент клеточного материала
Кислород	20	$H_2^{}$ О, органические соединения, $CO_2^{}$, и $O_2^{}$	Компонент клеточного материала и воды; O_2 акцептор электронов при аэробном дыхании
Азот	14	NH_3 , NO_3 , органические соединения, N_2	Компонент аминокислот, нуклеиновых кислот, нуклеотидов и коферментов
Водород	8	H ₂ O, органические соединения, H ₂	Основной компонент органических соединений и клеточной воды
Фосфор	3	Неорганический фосфат (PO ₄)	Компонент нуклеиновых кислот, нуклеотидов, фосфолипидов, LPS, тейхоевых кислот
Сера	1	SO ₄ , H ₂ S, S°, сера органических соединений	Компонент цистеина и метионина, глутатиона, нескольких коферментов
Калий	1	Соли калия	Основной неорганический клеточный катион и кофактор некоторых энзимов
Магний	0.5	Соли магния	неорганический клеточный катион, кофактор некоторых ферментативных реакций
Кальций	0.5	Соли кальция	неорганический клеточный катион, кофактор некоторых ферментов и компонент эндоспор
Железо	0.2	Соли железа	Компонент цитохромов и некоторых негемовых железосодержащих белков и кофакторы некоторых ферментативных реакций

Метаболизм прокариот.

- **Метаболизм** совокупность ферментативных процессов, протекающих в клетке и обеспечивающих её энергетические и биосинтетические потребности.
- Энергетический метаболизм (катаболизм) поток реакций, сопровождающийся мобилизацией энергии и преобразованием её в электрохимическую или химическую форму, которая затем используется во всех энергозависимых процессах.
- Конструктивный метаболизм (биосинтез, анаболизм)
 - поток реакций, в результате которых за счет поступающих извне веществ строится вещество клетки и при этом используется запасённая клеткой энергия.

Метаболизм прокариот

- В зависимости от **источника углерода** для конструктивного метаболизма микроорганизмы делятся на **автотрофы и гетеротрофы.**
- В зависимости от **источника энергии** на фототрофы и хемотрофы.
- В зависимости от **источника электронов** в энергетическом процессе на **литотрофы и органотрофы.**

Table 2. Основные пищевые типы прокариот

Пищевой тип	Источник энергии	Источник углерода	Примеры
Фотоавтотрофы	Свет	CO ₂	Цианобактерии, некоторые Пурпурные и Зеленые бактерии
Фотогетеротрофы	Свет	Органичес-кие вещества	Некоторые Пурпурные и Зеленые бактерии
Хемоавтотрофы или Литотрофы (Литоавтотрофы)	Неорганические соединения, например H_2 , NH_3 , NO_2 , H_2S	CO ₂	Немногие бактерии и многие Археа
Хемогетеротрофы или гетеротрофы	Органические вещества	Органичес- кие вещества	Большинство бактерий и некоторые Археа

Метаболизм прокариот

- Факторы роста вещества, которые прокариоты по каким-либо причинам не могут синтезировать самостоятельно из используемого источника углерода (аминокислоты, пурины, пиримидины, витамины и др.). Такие вещества добавляют в питательные среды в готовом виде в небольших количествах.
- Микроорганизмы, которым в дополнение к основному источнику углерода необходимы факторы роста, называются ауксотрофы.
- Микроорганизмы, которые синтезируют все необходимые органические соединения из основного источника углерода самостоятельно, называются **прототрофы**.

Table 3. Общие витамины, требующиеся в питании некоторым бактериям.

Витамин	Коферментная форма	Функция
р-Аминобензой- ная кислота (PABA)	-	Предшественник биосинтеза фолиевой кислоты
Фолиевая кислота	Тетрагидрофолат	Перенос одноуглеродных соединений необходимых для синтеза тимина, пуриновых оснований, серина, метионина и пантотената
Биотин	Биотин	Биосинтетические реакции для CO ₂ фиксации
Липоевая кислота	Липоамид	Перенос ацильных групп при окислении кетокислот
Меркаптоэтан- сернистая кислота	Кофермент М	СН ₄ продукция при метаногенезе
Никотиновая кислота	NAD (nicotinamide adenine dinucleotide) и NADP	Перенос электронов при дегидрогеназных реакциях
Пантотеновая кислота	Кофермент А и Ацил- транспортный протеин (АСР)	Окисление кетокислот и перенос ацильных групп в метаболических реакциях
Пиридоксин (В6)	Пиридоксальфосфат	Трансаминирование, дезаминирование, декарбоксилирование и рацемирование аминокислот
Рибофлавин (В2)	FMN (flavin mononucleotide) и FAD (flavin adenine dinucleotide)	Окислительно-востановительные реакции
Тиамин (В1)	Тиаминпирофосфат (ТРР)	Декарбоксилирование кетокислот и реакции трансаминирования
B12	Кобаламин, связанный с адениновым нуклеозидом	Перенос метильных групп

Электронтранспортные процессы

Хиноны и нафтохиноны

K

Table 4a. Минимальная питательная среда для роста *Bacillus megaterium*. Пример химическиопределенной питательной среды для роста гетеротрофных бактерий.

Компонент	Количество	Функция компонента
Сахароза	10.0 г	Источник энергии и С
K ₂ HPO ₄	2.5 г	рН буфер; источник Р и К
KH ₂ PO ₄	2.5 г	рН буфер; источник Р и К
(NH ₄)2HPO ₄	1.0 г	рН буфер; источник N и P
MgSO ₄ 7H ₂ O	0.20 г	Источники S и Mg ⁺⁺
FeSO ₄ 7H ₂ O	0.01 г	Источник Fe ⁺⁺
MnSO ₄ 7H ₂ O	0.007 г	Источник Mn ⁺⁺
вода	985 мл	
pH 7.0		

Table 4b. Синтетическая питательная среда (также среда обогащения) для роста литотрофных бактерий (*Thiobacillus thiooxidans*).

Компонент Количество		Функция компонента
NH ₄ Cl	0.52 г	Источник N
KH ₂ PO ₄	0.28 г	Источник Р и К
MgSO ₄ 7H ₂ O	0.25 г	Источник S и Mg ⁺⁺
CaCl ₂ 2H ₂ O	0.07 г	Источник Ca ⁺⁺
S	1.56 г	Источник энергии
CO ₂	5%*	Источник С
Вода	1000 мл	
pH 3.0	* Периодически среду	продувают воздухом с 5% СО ₂ .

Table 5a. Комплексная питательная среда для роста требовательных бактерий.

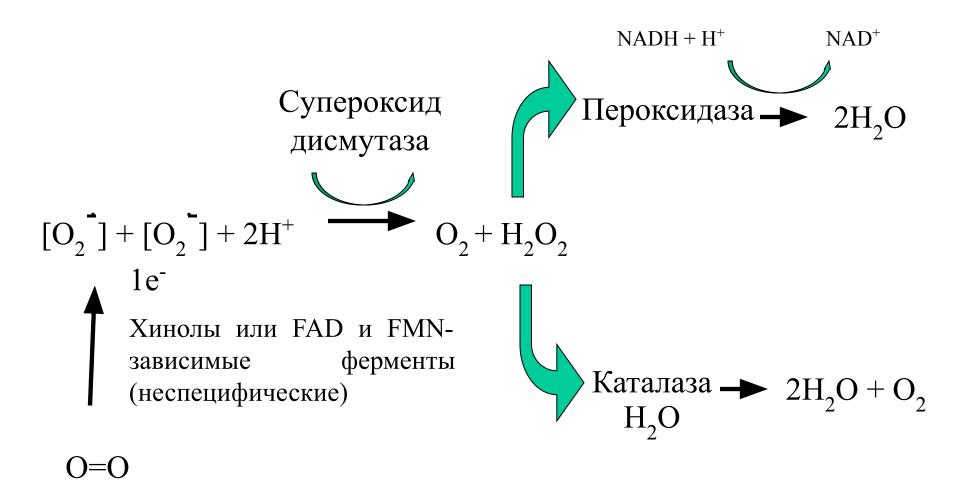

Компонент	Количество	Функция компонента
Мясной экстракт	1.5 г	Источник витаминов и других факторов роста
Дрожжевой экстракт	3.0 г	Источник витаминов и других факторов роста
Пептон	6.0 г	источник аминокислот, N, S, и P
Глюкоза	1.0 г	Источник С и энергии
Агар	15.0 г	Инертный уплотняющий агент
Вода	1000 мл	
pH 6.6		

Табл 6. Термины, описывающие отношения микроорганизмов к O_2 .

		Условия среды	
Группа	Аэробиоз	Анаэробиоз	<i>O₂ эффект</i>
Облигатные аэробы	Рост	Нет роста	Требуется (используется для аэробного дыхания)
Микроаэрофилы	Рост, если уровень 0 ₂ не слишком высок	Нет роста	Требуется но при уровне ниже 0.2 атм
Облигатные анаэробы	Нет роста	Рост	Токсичен
Факультативные анаэробы	Рост	Рост	Не требуется для роста, но используется когда доступен
Аэротолерантные анаэробы	Рост	Рост	Не требуется и не используется

Table 7. Распределение супероксид дисмутазы, каталазы и пероксидазы в прокариотах с различным уровнем толерантности к ${\sf O}_2$.

Группа	супероксид дисмутаза	Ката лаза	Перок сидаза
Облигатные аэробы и большинство факультативных анаэробов (напр. Энтеробактерии)	+	+	-
Большинство аэротолерантных анаэробов (напр. Streptococci)	+	-	+
Облигатные анаэробы (напр. Clostridia, Methanogens, Bacteroides)	-	-	-

Культивирование анаэробных микроорганизмов.

Фигура 2. Уровни рН окружающей среды для роста трех классов прокариот. Большинство свободноживущих бактерий выращивают в диапазоне рН приблизительно три единицы. Обратите внимание на симметрию кривых ниже и выше оптимума рН для роста.

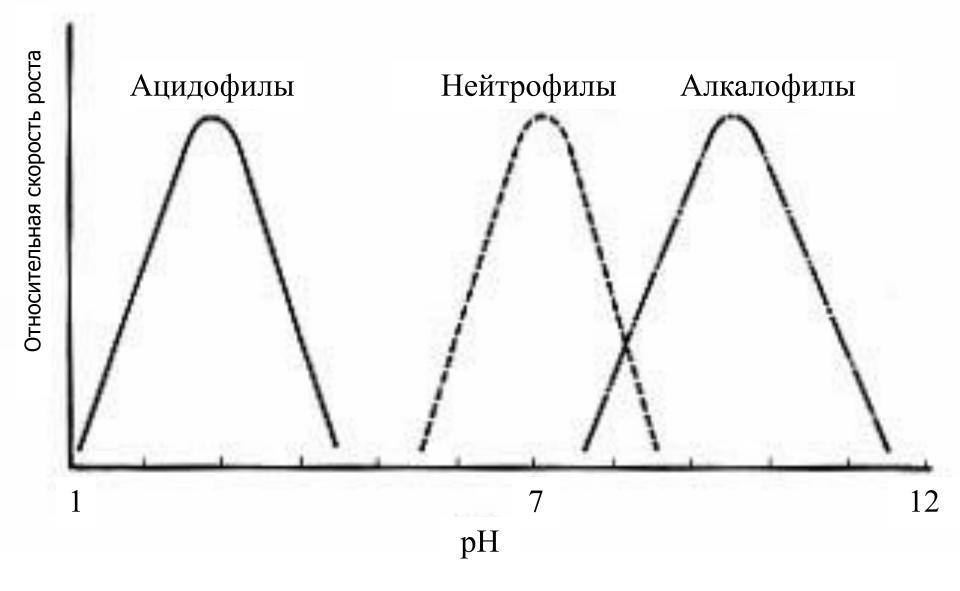


Table 8. Минимум, максимум и оптимум рН для роста некоторых бактерий.

оактерии.			
Организмы	Минимум рН	Оптимум рН	Максимум рН
Thiobacillus thiooxidans	0.5	2.0-2.8	4.0-6.0
Sulfolobus acidocaldarius	1.0	2.0-3.0	5.0
Bacillus acidocaldarius	2.0	4.0	6.0
Zymomonas lindneri	3.5	5.5-6.0	7.5
Lactobacillus acidophilus	4.0-4.6	5.8-6.6	6.8
Staphylococcus aureus	4.2	7.0-7.5	9.3
Escherichia coli	4.4	6.0-7.0	9.0
Clostridium sporogenes	5.0-5.8	6.0-7.6	8.5-9.0
Erwinia caratovora	5.6	7.1	9.3
Pseudomonas aeruginosa	5.6	6.6-7.0	8.0
Thiobacillus novellus	5.7	7.0	9.0

7.8

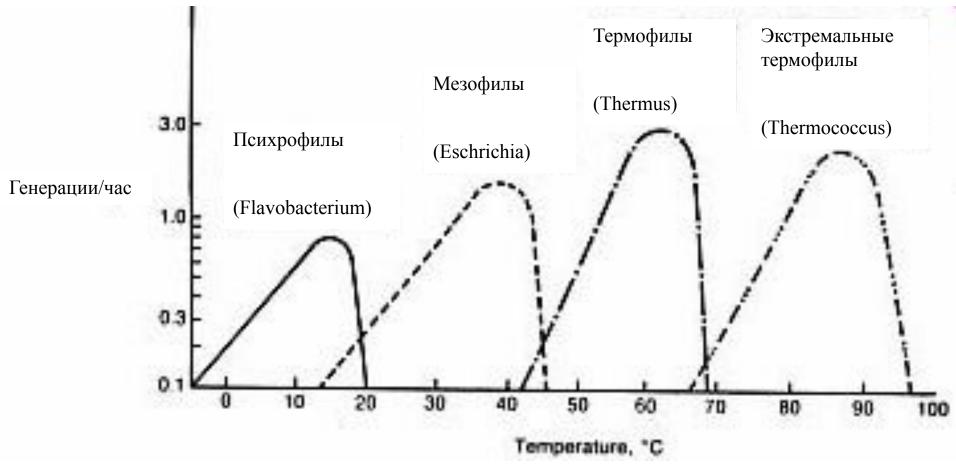
7.6-8.6

8.3

10.0

6.5

6.6


Streptococcus pneumoniae

Nitrobacter sp

Table 9. Термины используемые для описания температурных характеристик микроорганизмов.

Группа	Минимум	Оптимум	Максимум	Комментарии
Psychrophile	Ниже 0	10-15	Ниже 20	Рост лучше при относительно низкой Т
Psychrotroph	0	15-30	Выше 25	Способны расти при низких Т, но предпочитает умеренные Т
Mesophile	10-15	30-40	Ниже 45	Большинство бактерий обитающих в симбиозе с теплокровными
Thermophile	45	50-85	Выше 100 (кипение)	Среди всех thermophiles существуют широкие вариации в оптимуме, максимуме и минимуме Т

Уровень роста в зависимости от температуры для четырех классов бактерий окружающей среды. Большинство бактерий растут в температурном диапазоне равном, приблизительно, 30 градусам. Кривые показывают три кардинальные точки: минимум, оптимум и максимум температуры для роста. Имеется устойчивое увеличение уровня роста между минимальными и оптимальными значениями температуры, но резкое снижение уровня роста с приближением Т к максимуму.

ПОДРАЗДЕЛЕНИЕ БАКТЕРИЙ НА ГРУППЫ ПО ОТНОШЕНИЮ К ТЕМПЕРАТУРЕ.

- ПСИХРОФИЛЫ оптимум менее 20 ° С
 - Vibrio marinus
 - Pseudomonas fluorescens
 - Yersinia enterocolitica

• МЕЗОФИЛЫ - оптимум 30 - 40 ° C

- ТЕРМОФИЛЫ оптимум 45 65 ° C
 - Bacillus stearotermophilus

Table 10a. Минимум, максимум и оптимум температуры для роста некоторых бактерий и archaea.

Температура для роста (С	°)
_	

Бактерии	Минимум	Оптимум	Максимум
Listeria monocytogenes	1	30-37	45
Vibrio marinus	4	15	30
Pseudomonas maltophilia	4	35	41
Thiobacillus novellus	5	25-30	42
Staphylococcus aureus	10	30-37	45
Escherichia coli	10	37	45
Clostridium kluyveri	19	35	37
Streptococcus pyogenes	20	37	40
Streptococcus pneumoniae	25	37	42
Bacillus flavothermus	30	60	72
Thermus aquaticus	40	70-72	79
Methanococcus jannaschii	60	85	90
Sulfolobus acidocaldarius	70	75-85	90
Pyrobacterium brockii	80	102-105	115

- POCT координированное увеличение размеров и веса клетки.
- РАЗМНОЖЕНИЕ –увеличение во времени числа клеток микроорганизмов в питательной среде.
- Изменение численности популяции микроорганизмов выражается кривой роста.

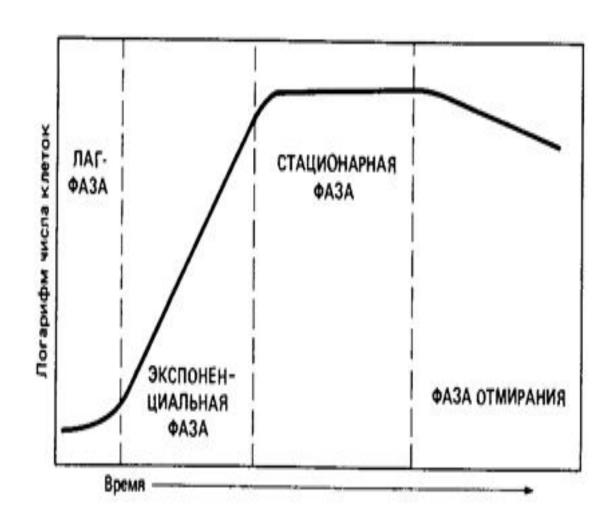


Рис. 6.6. Кривая роста бактериальной культуры.

Время генерации (время удвоения)

для разных видов прокариот в благоприятных условиях

Escherichia coli

&

20 мин

Staphylococcus aureus

Borrelia hermsii

84

Mycobacterium tuberculosis

14-16 ч

Treponema pallidum

33 ч

Mycobacterium leprae

21 день

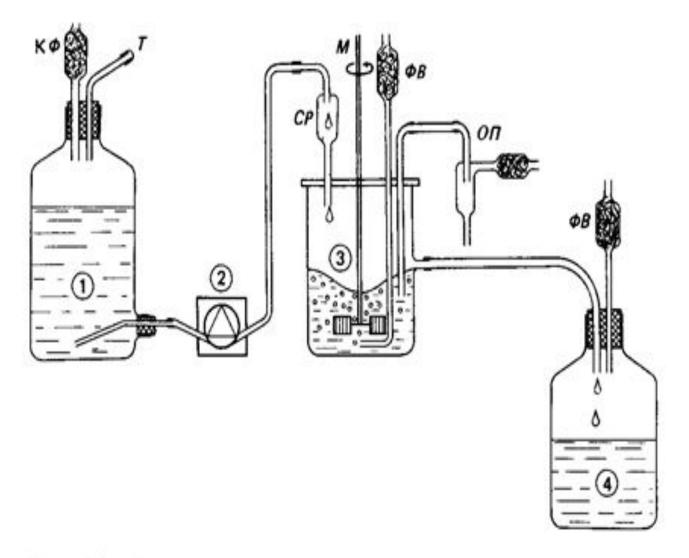


Рис. 6.9. Принцип непрерывной культуры в хемостате. 1—сосуд с питательной средой, снабженный компенсационным фильтром ($K\Phi$) и трубкой для дозаправки (T); 2—перистальтический насос; 3—хемостат с притоком питательной среды (CP), мешалкой (M), фильтром для воздуха (ΦB) и приспособлением для отбора проб ($O\Pi$); 4—приемный сосуд с фильтром для выходящего воздуха (ΦB).