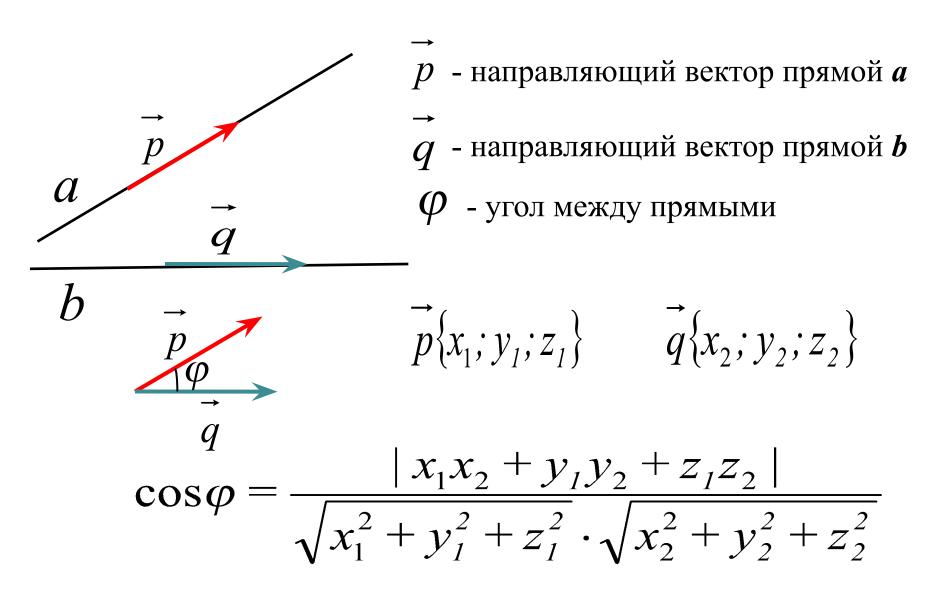
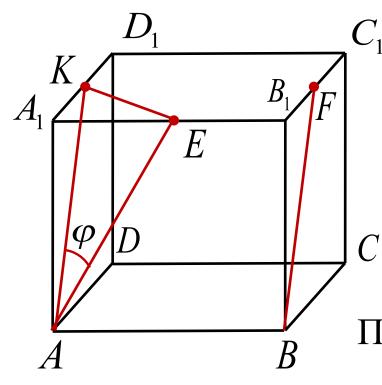
Стереометрия

Метод координат в задачах C2

Угол между прямыми



Задача 1 В единичном кубе $A...D_1$ найдите угол между прямыми AE и BF, где E – середина ребра A_1B_1 , а F – середина ребра B_1C_1



Решение (1 способ)

 \pmb{K} - середина A_1D_1

$$AK \parallel BF \quad \angle KAE = \varphi$$

$$AE = AK = \frac{\sqrt{5}}{2} \quad KE = \frac{\sqrt{2}}{2}$$

По теореме косинусов для $\triangle AKE$

$$KE^{2} = AE^{2} + AK^{2} - 2 \cdot AE \cdot AK \cdot \cos \varphi$$
$$\cos \varphi = 0.8 \qquad \varphi = \arccos 0.8$$

Решение (2 способ)

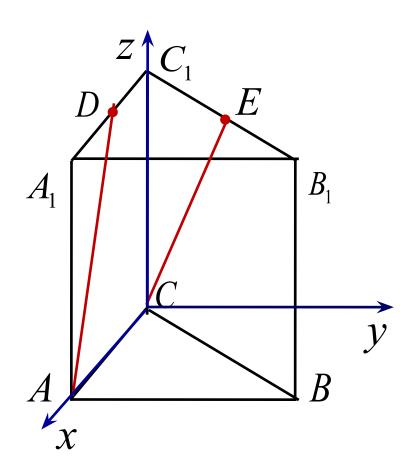
$$C_{1} = A(1;0;0) \qquad E(1;\frac{1}{2};1)$$

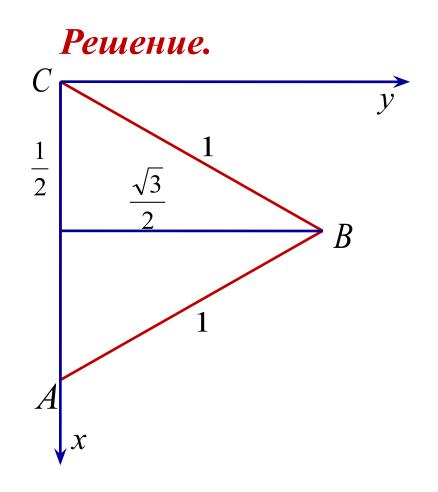
$$B(1;1;0) \qquad F(\frac{1}{2};1;1)$$

$$C \Rightarrow AE \left\{0;\frac{1}{2};1\right\} \qquad \overrightarrow{BF} \left\{-\frac{1}{2};0;1\right\}$$

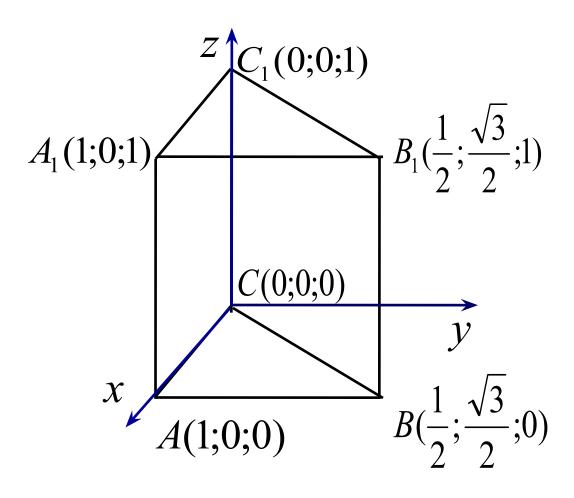
$$\cos \varphi = \frac{\left[0\cdot\left(-\frac{1}{2}\right) + \frac{1}{2}\cdot 0 + 1\cdot 1\right]}{\sqrt{0^{2} + \left(\frac{1}{2}\right)^{2} + 1^{2}} \cdot \sqrt{\left(-\frac{1}{2}\right)^{2} + 0^{2} + 1^{2}}} = 0.8$$

Задача 2В правильной треугольной призме $ABCA_1B_1C_1$ все ребра которой равны 1, найдите косинус угла между прямыми AD и CE, где D и E - соответственно середины ребер A_1C_1 и B_1C_1

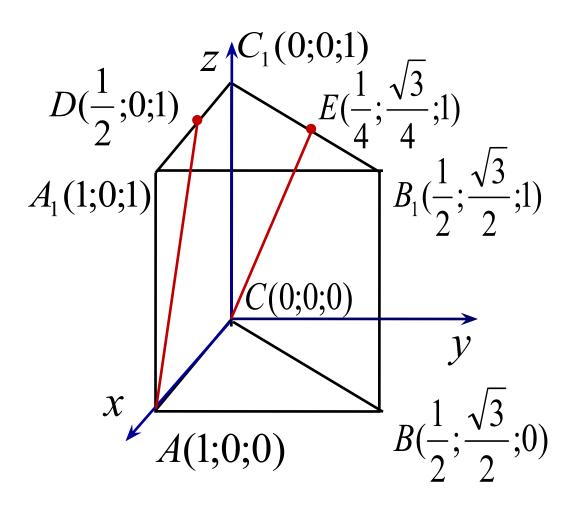




Координаты правильной треугольной призмы



Решение.



$$\overrightarrow{AD}\left\{-\frac{1}{2};0;1\right\}$$

$$\overrightarrow{CE}\left\{\frac{1}{4};\frac{\sqrt{3}}{4};1\right\}$$

$$\overrightarrow{AD}\left\{-\frac{1}{2};0;1\right\}$$

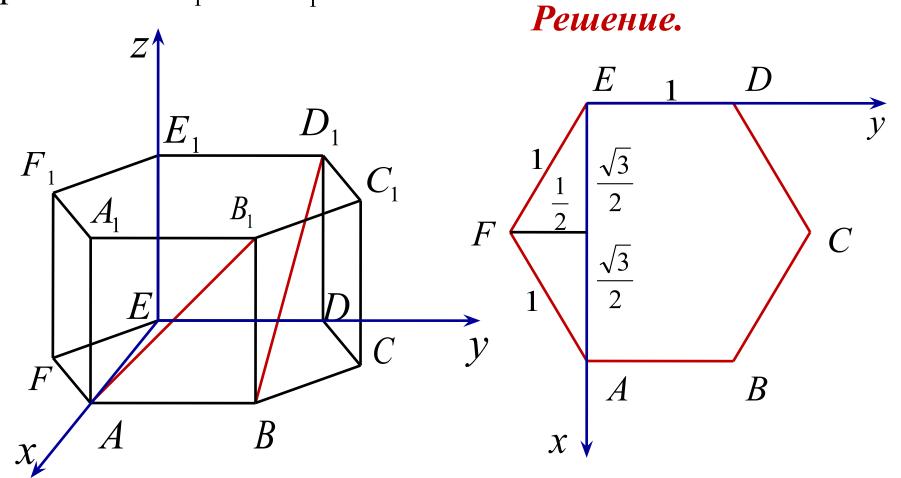
$$\overrightarrow{AD}\left\{-\frac{1}{2};0;1\right\} \qquad \overrightarrow{CE}\left\{\frac{1}{4};\frac{\sqrt{3}}{4};1\right\}$$

$$|-\frac{1}{2} \cdot \frac{1}{4} + 0 \cdot \frac{\sqrt{3}}{4} + 1 \cdot 1|$$

$$\sqrt{\left(-\frac{1}{2}\right)^2 + 0^2 + 1^2} \cdot \sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{\sqrt{3}}{4}\right)^2 + 1^2}$$

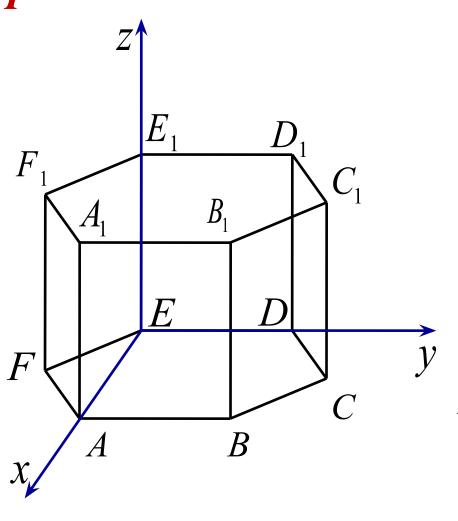
$$\cos \varphi = \frac{\frac{7}{8}}{\frac{\sqrt{5}}{2} \cdot \frac{\sqrt{5}}{2}} = 0,7$$

Задача 3 В правильной шестиугольной призме $A...F_1$ все ребра которой равны 1, найдите косинус угла между прямыми AB_1 и BD_1



Координаты правильной шестиугольной

призмы



$$E_1(0;0;1)$$
 $D_1(0;1;1)$

$$F_1(\frac{\sqrt{3}}{2}; -\frac{1}{2}; 1)$$
 $C_1(\frac{\sqrt{3}}{2}; \frac{3}{2}; 1)$

$$A_1(\sqrt{3};0;1)$$
 $B_1(\sqrt{3};1;1)$

$$E(0;0;0)$$
 $D(0;1;0)$

$$F(\frac{\sqrt{3}}{2}; -\frac{1}{2}; 0)$$
 $C(\frac{\sqrt{3}}{2}; \frac{3}{2}; 0)$

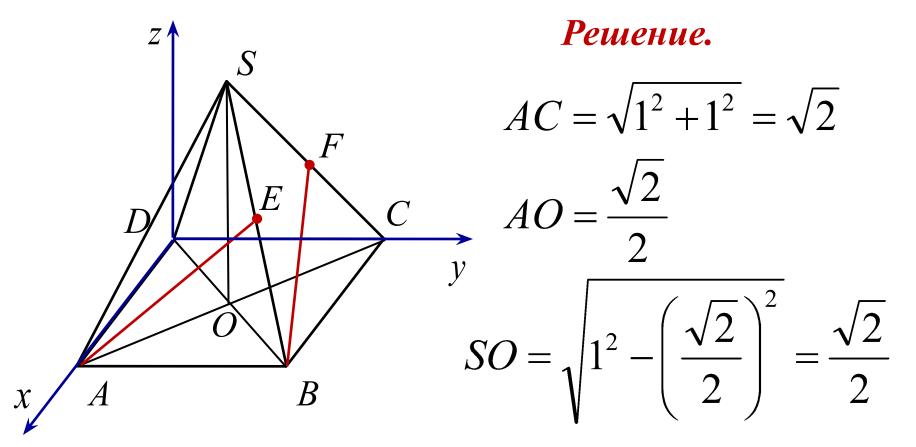
$$A(\sqrt{3};0;0)$$
 $B(\sqrt{3};1;0)$

Решение.

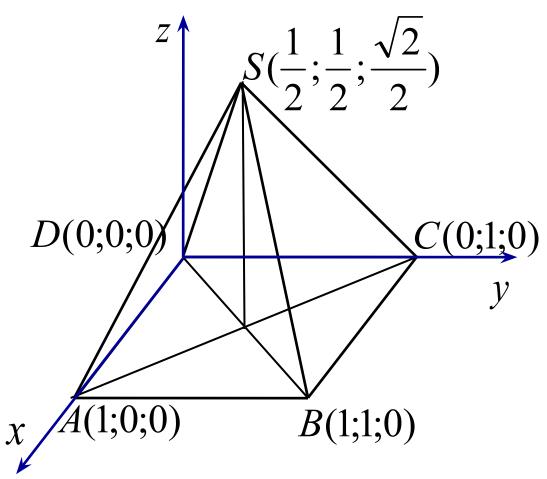
$$E_{1} \qquad D_{1} \qquad A(\sqrt{3};0;0) \qquad B_{1}(\sqrt{3};1;1) \\ B(\sqrt{3};1;0) \qquad D_{1}(0;1;1) \\ \overrightarrow{AB_{1}} \left\{0;1;1\right\} \\ X \qquad B \qquad \overrightarrow{BD_{1}} \left\{-\sqrt{3};0;1\right\}$$

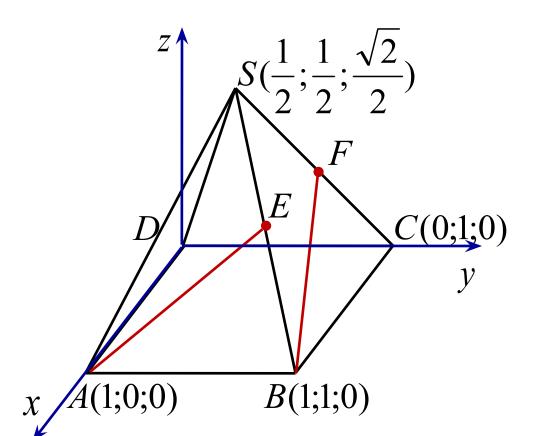
$$\cos\varphi = \frac{|0\cdot(-\sqrt{3})+1\cdot0+1\cdot1|}{\sqrt{0^2+1^2+1^2}\cdot\sqrt{(-\sqrt{3})^2+0^2+1^2}} = \frac{1}{2\sqrt{2}}$$

Задача 4 В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F — середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.



Координаты правильной четырехугольной пирамиды





Решение.

E- середина SB

$$E(\frac{3}{4}; \frac{3}{4}; \frac{\sqrt{2}}{4})$$

F- середина SC

$$F(\frac{1}{4}; \frac{3}{4}; \frac{\sqrt{2}}{4})$$

$$\overrightarrow{AE} \left\{ -\frac{1}{4}; \frac{3}{4}; \frac{\sqrt{2}}{4} \right\}$$

$$\overrightarrow{BF}\left\{-\frac{3}{4};-\frac{1}{4};\frac{\sqrt{2}}{4}\right\}$$

$$\overrightarrow{AE} \left\{ -\frac{1}{4}; \frac{3}{4}; \frac{\sqrt{2}}{4} \right\} \qquad \overrightarrow{BF} \left\{ -\frac{3}{4}; -\frac{1}{4}; \frac{\sqrt{2}}{4} \right\}$$

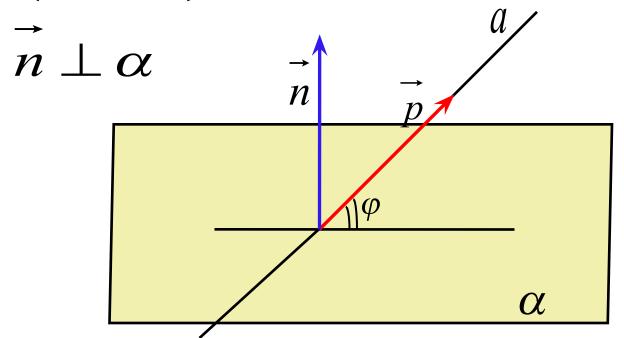
$$\cos \varphi = \frac{\left| -\frac{1}{4} \cdot \left(-\frac{3}{4} \right) + \frac{3}{4} \cdot \left(-\frac{1}{4} \right) + \frac{\sqrt{2}}{4} \cdot \frac{\sqrt{2}}{4} \right|}{\sqrt{\left(-\frac{1}{4} \right)^2 + \left(\frac{3}{4} \right)^2 + \left(\frac{\sqrt{2}}{4} \right)^2} \cdot \sqrt{\left(-\frac{3}{4} \right)^2 + \left(-\frac{1}{4} \right)^2 + \left(\frac{\sqrt{2}}{4} \right)^2}}$$

$$\cos \varphi = \frac{1}{6}$$
 $\varphi = \arccos \frac{1}{6}$

Угол между прямой и плоскостью

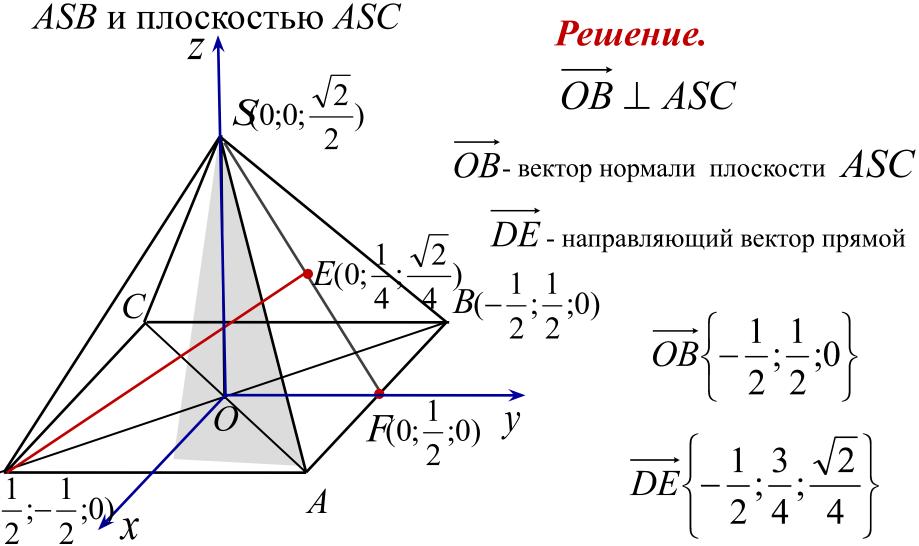
 $\overrightarrow{p}\{x_1;y_1;z_1\}$ - направляющий вектор прямой

 $\vec{n}\{x_2;y_2;z_2\}$ - нормальный вектор плоскости



$$\sin \varphi = \frac{|x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2|}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Задача 5 В правильной четырехугольной пирамиде SABCD, все ребра которой равны I, найдите угол между прямой DE, где E- середина апофемы SF грани ASE и проскости ASC



$$\overrightarrow{OB}igg\{-rac{1}{2};rac{1}{2};0igg\}$$
 - вектор нормали плоскости ASC

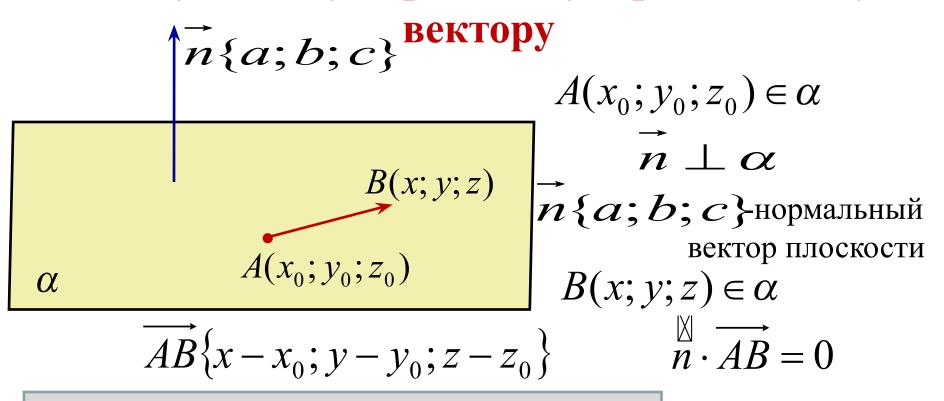
$$\overrightarrow{DE} \left\{ -\frac{1}{2}; \frac{3}{4}; \frac{\sqrt{2}}{4} \right\}$$
 - направляющий вектор прямой DE

$$\left| \left(-\frac{1}{2} \right) \cdot \left(-\frac{1}{2} \right) + \frac{1}{2} \cdot \frac{3}{4} + 0 \cdot \frac{\sqrt{2}}{4} \right|$$

$$\sin \varphi = \frac{(2)(2)(2)(2)(2)(2)(2)}{\sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right$$

$$\sin \varphi = \frac{\frac{5}{8}}{\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{15}}{4}} = \frac{5}{\sqrt{30}} \qquad \varphi = \arcsin \frac{5}{\sqrt{30}}$$

Уравнение плоскости, проходящей через данную точку перпендикулярно данному



$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

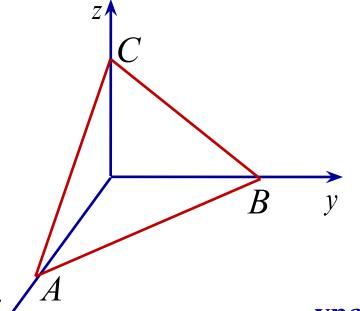
$$ax + by + cz + d = 0$$
 , где $d = -(ax_0 + by_0 + cz_0)$

Уравнение плоскости

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

$$ax + by + cz + d = 0$$
 , где $d = -(ax_0 + by_0 + cz_0)$

Если плоскость проходит через начало координат, то d=0



Если плоскость пересекает оси координат в точках A, B, C, то

$$\frac{x}{A} + \frac{y}{B} + \frac{z}{C} = 1$$

уравнение плоскости в отрезках

Задача 6 Составить уравнение плоскости, проходящей через точки A(-2;3;5), B(4;-3;0), C(0;6;-5) и найти координаты вектора нормали.

Решение.

$$ax + by + cz + d = 0$$

$$\begin{cases}
-2a + 3b + 5c + d = 0 \\
4a - 3b + d = 0 \\
6b - 5c + d = 0
\end{cases}$$

$$d = 5c - 6b$$

$$\begin{cases}
-2a - 3b + 10c = 0 \\
4a - 9b + 5c = 0
\end{cases}$$

$$a = \frac{5}{2}c, b = \frac{5}{3}c, d = -5c$$

$$\frac{5}{2}cx + \frac{5}{3}cy + cz - 5c = 0$$

$$15x + 10y + 6z - 30 = 0$$

$$\overrightarrow{n}\{15; 10; 6\}$$

Расстояние от точки до плоскости

$$M(x_0; y_0; z_0)$$
 $n \in \{a; b; c\}$
 α

$$\rho(M,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

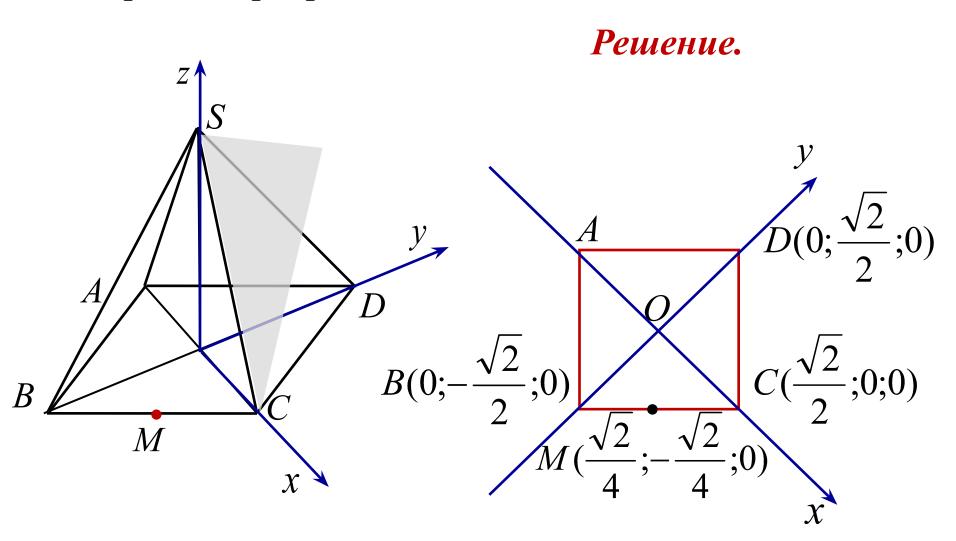
Расстояние между параллельными плоскостями

$$ax + by + cz + d_1 = 0$$

$$ax + by + cz + d_2 = 0$$

$$\rho(\alpha, \beta) = \frac{|d_2 - d_1|}{\sqrt{a^2 + b^2 + c^2}}$$

Задача 7 В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние от середины ребра BC до плоскости SCD



Решение

$$S(0;0;\frac{\sqrt{2}}{2}) \qquad \rho(M,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$D(0; \frac{\sqrt{2}}{2}; 0) \qquad \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} + \frac{z}{\sqrt{2}} = 1$$

$$C(\frac{\sqrt{2}}{2}; 0; 0) \qquad \sqrt{2}x + \sqrt{2}y + \sqrt{2}z - 1 = 0$$

$$\rho(M, SCD) = \frac{|\sqrt{2} \cdot \frac{\sqrt{2}}{4} + \sqrt{2} \cdot \left(-\frac{\sqrt{2}}{4}\right) + \sqrt{2} \cdot 0 - 1|}{\sqrt{\sqrt{2}^2 + \sqrt{2}^2 + \sqrt{2}^2}} = \frac{1}{\sqrt{6}}$$

Угол между плоскостями

$$\alpha : a_1 x + b_1 y + c_1 z + d_1 = 0$$

Вектор нормали плоскости lpha : $\overline{n_1}$ $\{a_1;b_1;c_1\}$

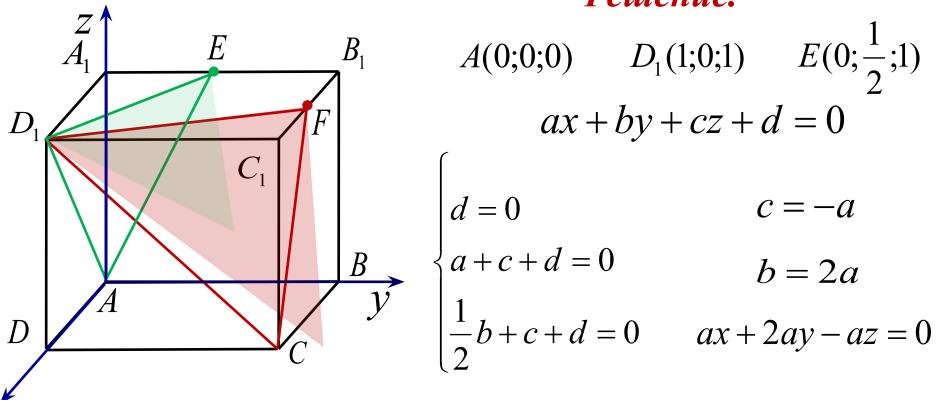
$$\beta : a_2x + b_2y + c_2z + d_2 = 0$$

Вектор нормали плоскости eta: $\overrightarrow{n_2}\{a_2;b_2;c_2\}$

$$\cos \varphi = \frac{|a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

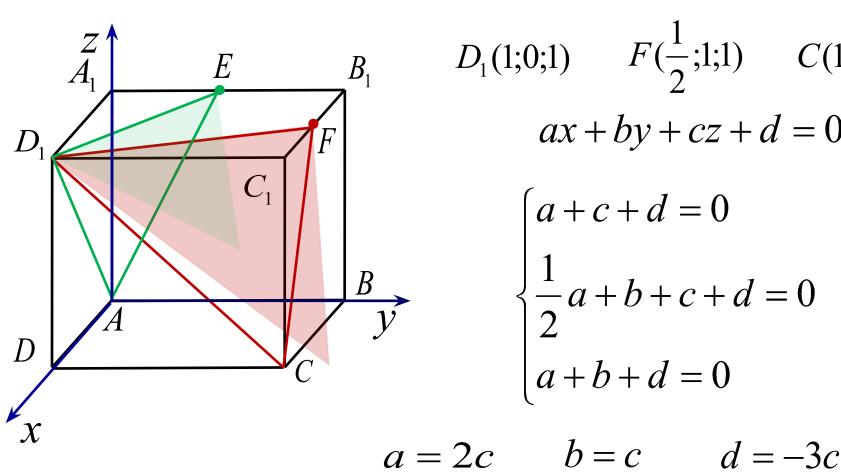
Задача 8 В единичном кубе $A...D_1$ найдите угол между плоскостями AD_1E и D_1FC , где E — середина ребра A_1B_1 , а F — середина ребра B_1C_1

Решение.



Уравнение плоскости AD_1E : x + 2y - z = 0

Вектор нормали плоскости $AD_1E: \overline{n_1} \{1;2;-1\}$



$$D_{1}(1;0;1) F(\frac{1}{2};1;1) C(1;1;0)$$

$$ax + by + cz + d = 0$$

$$\begin{cases} a+c+d=0\\ \frac{1}{2}a+b+c+d=0\\ a+b+d=0 \end{cases}$$

$$2cx + cy + cz - 3c = 0$$

Уравнение плоскости D_1FC : 2x + y + z - 3 = 0

Вектор нормали плоскости D_1FC : m_2 {2;1;1}

$$\cos \varphi = \frac{|a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\overrightarrow{n_1}$$
 {1;2;-1} $\overrightarrow{n_2}$ {2;1;1}

$$\cos \varphi = \frac{|1 \cdot 2 + 2 \cdot 1 - 1 \cdot 1|}{\sqrt{1^2 + 2^2 + (-1)^2} \cdot \sqrt{2^2 + 1^2 + 1^2}} = \frac{1}{2}$$

$$\varphi = \frac{\pi}{3}$$