

cucmembl OXMOLIKOEHU

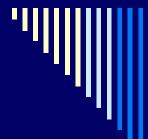
Анализ систем воздушного охлаждения

Работа систем воздушного охлаждения основана на эффекте охлаждения устройств находящихся в воздушном потоке. Степень охлаждения в таких системах зависит от температуры воздуха, параметров потока и площади поверхности устройства.

Для увеличения площади поверхности устройства используют металлические радиаторы специальной формы, которые крепятся к охлаждаемым деталям посредством термоинтерфейсов

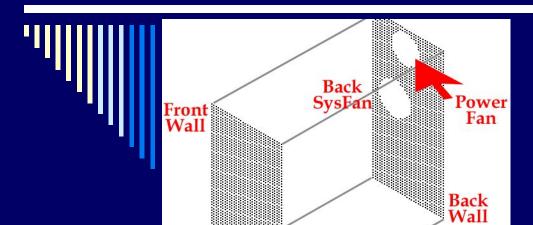

Воздушный поток, охлаждающий устройства, создается вентиляторами (cooler, кулер).

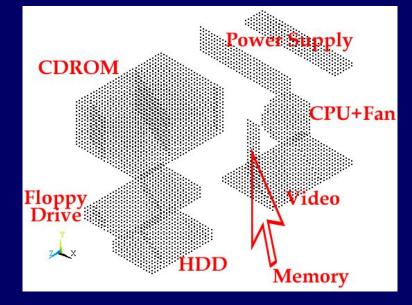
Самый простой, самый доступный и, в большинстве случаев, достаточный способ охлаждения компонентов, безусловно – самый "комплексный". Воздухом охлаждается все. Причем производители железа заинтересованы удержать тепловые пакеты своих продуктов и всего компьютера, как системы, в пределах этой категории. Оно и понятно – это позволяет удешевить конечный продукт и сделать его более доступным.

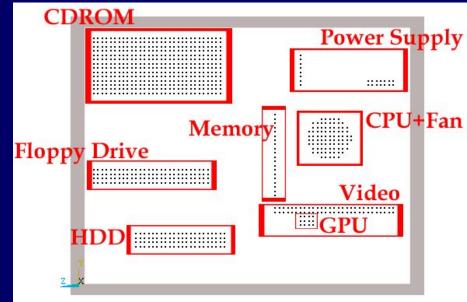

Допускает небольшой разгон, аккуратно укладывающийся в новые концепции производителей мат. плат (динамический оверклокинг

При анализе таких систем главное – убедиться в отсутствии вихрей, в том, что горячий воздух быстро покидает корпус, а для поступления холодного не создается никаких препятствий.

Для анализа прохождения потоков воздуха через корпус стандарта ATX можно построить геометрическую модель этого корпуса и проанализировать при помощи компьютерных программ.



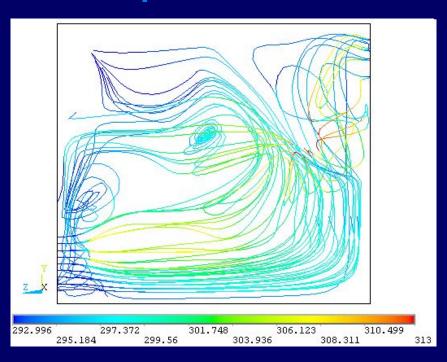

Модель корпуса АТХ

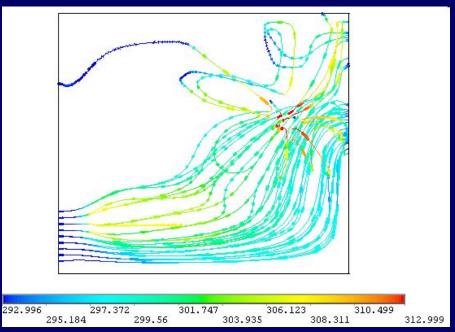

В геометрическую модель включим стенки корпуса и основные располагающиеся внутри крупногабаритные детали. В качестве образца рассмотрим Inwin J535 с корпусными вентиляторами в предусмотренных производителем местах, стандартный блок питания с одним вентилятором, Radeon 9000 с пассивным охлаждением, боксовый кулер от Intel, одну планку памяти. Так как в прототипе геометрической модели для подключения накопителя на жестких магнитных дисках использовался интерфейс Serial ATA (характеризующийся малыми размерами соединительного кабеля) вкупе с грамотным расположением IDE шлейфов для подключения приводов чтения/записи компакт дисков, эти и другие провода не будем учитывать

в рассмотрение включим следующие элементы,			
	ограничивающие распространение воздушного потока:		накопитель на жестких магнитных дисках (HDD)
	стенки корпуса (Walls)		микросхемы памяти (Memory)
	накопитель на жестких магнитных дисках (HDD)	Вр	ассмотрение включим следующие
	два устройства чтения/записи компакт дисков (CDROM)		элементы, определяющие скорость воздушного потока:
	дисковод для гибких дискет (Floppy Drive)		вентилятор процессора (CPUFan)
	видеокарта (Video)		вентилятор блока питания (PowerFan)
	микросхема памяти (Memory)		вентилятор на передней стенке корпуса
	стенки блока питания (Power)		(SysFanFront)
B p	ассмотрение включим следующие элементы для задания температурных нагрузок: центральный процессор с радиатором (CPU) графический процессор с радиатором (GPU)		вентилятор на задней стенке корпуса (SysFanBack)

SysFan

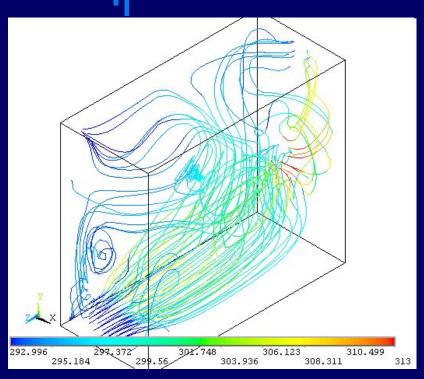


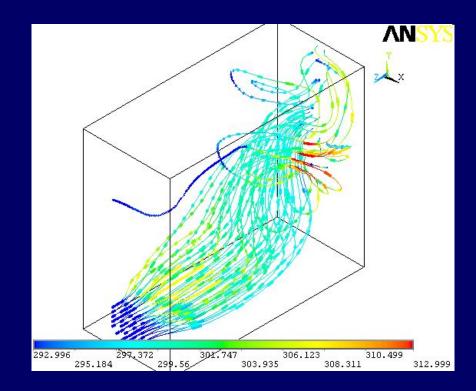

Пусть скорости воздушных потоков на вентиляторах одинаковы по величине во всех случаях, а направление потока воздуха, создаваемого процессорным вентилятором, постоянно и по направлению. Рассмотренные варианты установки вентиляторов с условными обозначениями приведены ниже.


- •вдув/ноль передний вентилятор работает на вдув, задний отсутствует, вентилятор блока питания работает на выдув
- •вдув/выдув передний вентилятор работает на вдув, задний и вентилятор блока питания работает на выдув
- •вдув/вдув передний и задний вентиляторы работают на вдув, вентилятор блока питания работает на выдув
- ноль/вдув передний вентилятор отсутствует, задний вентилятор работает на вдув, вентилятор блока питания на выдув
- •<u>обратный ток</u> передний вентилятор работает на выдув, задний и вентилятор блока питания работают на вдув

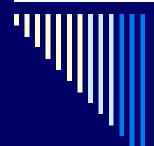
Начальную скорость потока воздуха, создаваемого вентиляторами, можно определить, исходя из их паспортных данных. Для всех вентиляторов известными являются объем пропускаемого воздуха за единицу времени и площадь сечения. При взаимодействии потока воздуха с препятствиями произвольной конфигурации, каковыми можно считать установленные внутри системного блока детали, логично ожидать возникновения турбулентных течений. Учтем это при рассчете потоков в данной модели

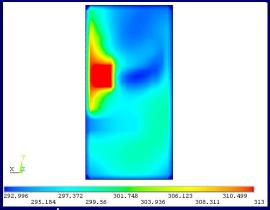
Сравнительный анализ систем охлаждения, работающих на вдув/выдув и вдув/вдув.



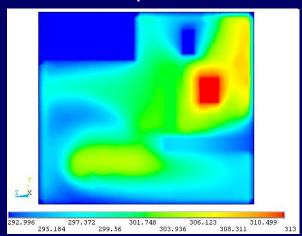

вдув/вдув, линии тока, вид сбоку

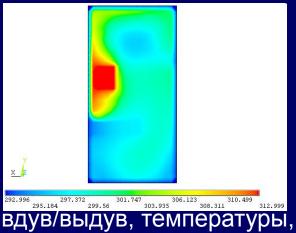
вдув/выдув, линии тока, вид сбоку

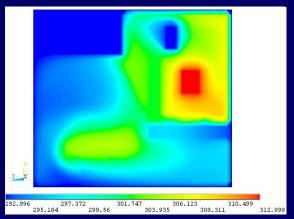

Сравнительный анализ систем охлаждения, работающих на вдув/выдув и вдув/вдув.

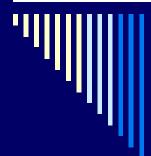


вдув/вдув, линии тока

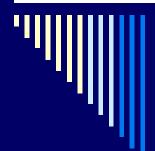

вдув/выдув, линии тока


Сравнительный анализ систем охлаждения, работающих на вдув/выдув и вдув/вдув (распределения температур).

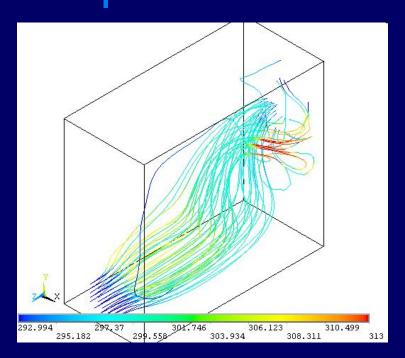

вдув/вдув, температуры, сечение через CPU


вдув/вдув, температуры, вид сбоку

вдув/выдув, температуры сечение через CPU

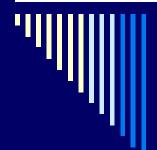


вдув/выдув, температуры вид сбоку

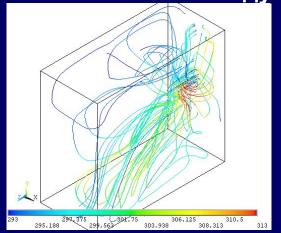


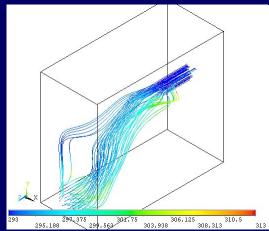
Сравнительный анализ систем охлаждения, работающих на вдув/выдув и вдув/вдув (вывод).

Каждый из вариантов имеет свои преимущества и недостатки. В первом случае горячий воздух быстрее отводится от процессора, но зато во втором случае, при работе вентилятора на задней стенке на вдув, процессор охлаждается более холодным воздухом.

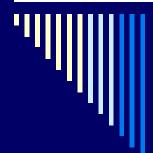


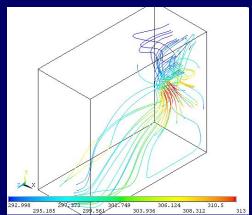
Сравнительный анализ систем охлаждения, работающих на вдув/ноль и ноль/вдув



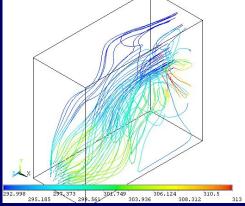

Одна из наиболее удачных конфигураций вентиляторов. По своим характеристикам распределений и температур практически не отличается от конфигурации вдув/выдув, используя на один вентилятор меньше (эффективно применяться может только при отсутствии других вытяжных отверстий).

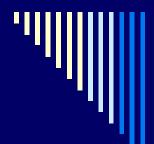
вдув/ноль, линии тока

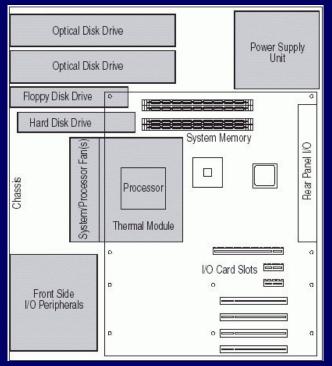

Сравнительный анализ систем охлаждения, работающих на вдув/ноль и ноль/вдув.




ноль/вдув, линии тока


Поток воздуха, поступающий через вентилятор, расположенный на задней стенке, практически не участвует в отводе тепла с центрального процессора и видеокарты (схема вверху). Это негативно сказывается на образовании зоны слабой конвекции вблизи микросхемы памяти и центрального процессора. При этом установленный на процессоре вентилятор (схема внизу) захватывает и повторно пропускает через себя часть нагретого воздуха. Такая установка вентиляторов одна из самых неэффективных, хотя из несколько симметричной геометрии можно было ожидать конфигурации потоков как в случае вдув/ноль


Краткая характеристика результатов для случая обратного тока



Так же, как и в предыдущем случае, основной поток воздуха практически не участвует в теплообмене с наиболее нагретыми частями модели. Очевидным недостатком применения такой компоновки вентиляторов является еще и то, что в этом случае принудительная конвекция происходит против направления небольшой по величине, но имеющей место естественной конвекции. Такая система расположения не может считаться самой эффективной.

Охлаждение корпусов ВТХ

Intel представила дизайн материнских плат нового поколения BTX (Balanced Technology Extended). По словам разработчиков, его основное достоинство - это более рациональное с точки зрения охлаждения системы размещение компонентов на плате. Однако в стандарт рассчитан только на один мощный источник тепла – CPU. В современных же системах кроме процессора активно нагреваются видеокарты и чипсет. Таким образом, внедрение стандарта BTX проблематично.

Как уже было отмечено, современные процессоры испытывают нужду в охлаждающих устройствах с как можно более низким термическим сопротивлением. На сегодня даже самые продвинутые радиаторы не справляются с этой задачей: в условиях естественной конвекции воздуха, т.е. когда скорость движения воздушных масс мала (типичный пример — марево над асфальтом дорожного полотна в жаркий летний день), «штатной» тепловой эффективности радиаторов оказывается недостаточно для поддержания приемлемой рабочей температуры процессора. Кардинально уменьшить термическое сопротивление радиатора можно только одним способом — хорошенько его вентилировать (говоря понаучному, создать условия вынужденной конвекции теплоносителя, то бишь воздуха). Как раз для этих целей практически каждый процессорный радиатор и оборудуется вентилятором, который добросовестно продувает его внутреннее межреберное пространство.

На сегодня в процессорных кулерах находят применение в основном <u>осевые (аксиальные) вентиляторы</u>, формирующие воздушный поток в направлении, параллельном оси вращения пропеллера (крыльчатки).

«Ходовая» часть вентилятора может быть построена на подшипнике скольжения (sleeve bearing, наиболее дешевая и недолговечная конструкция), на комбинированном подшипнике — один подшипник скольжения плюс один подшипник качения (one sleeve -one ball bearing, наиболее распространенная конструкция), и на двух подшипниках качения (two ball bearings, самая дорогая, но в то же время очень надежная и долговечная конструкция). Ну, а электрическая часть вентилятора повсеместно представляет собой миниатюрный электродвигатель постоянного тока.

Характеристики вентилятора:

производительность (технический термин — «расход») — величина, показывающая объемную скорость воздушного потока. Выражается она в кубических футах в минуту (cubic feet per minute, CFM). Чем больше производительность вентилятора, тем он более эффективно продувает радиатор, уменьшая термическое сопротивление последнего. Типичные значения расхода — от 10 до 80 CFM.

скорость вращения крыльчатки (в отечественной практике выражается в об/мин, американская единица измерения — rotations per minute, RPM). Чем быстрее вращается крыльчатка, тем выше становится производительность вентилятора. Типичные значения скорости — от 1500 до 7000 об/мин.

типоразмер. Как правило, чем больше габариты вентилятора, тем выше его производительность. Наиболее распространенные типоразмеры — 60x60x15 мм, 60x60x20 мм, 60x60x25 мм, 70x70x15 мм, 80x80x25 мм.

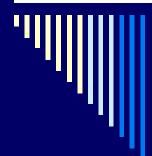
Наиболее существенными из эксплуатационных параметров являются уровень шума и срок службы вентилятора.

уровень шума вентилятора выражается в децибелах и показывает, насколько громким он будет в субъективном восприятии. Значения уровня шума вентиляторов лежат в диапазоне от 20 до 50 дБА. Человеком воспринимаются в качестве тихих только те вентиляторы, уровень шума которых не превышает 30-35 дБА.

<u>срок службы вентилятора</u> выражается в тысячах часов и является объективным показателем его надежности и долговечности. На практике срок службы вентиляторов на подшипниках скольжения не превышает 10-15 тыс. часов, а на подшипниках качения — 40-50 тыс.

Строение и особенности функционирования вентиляторов

Современные вентиляторы постоянного тока строятся на одно- или двухфазовых вентильных двигателях. Собственно, сами эти двигатели можно условно разделить на две основные составляющие: схему управления и индукторную машину. Индукторная машина повсеместно представляет собой связку ротор-статор, где ротором является кольцевой постоянный магнит, а статором — четырехполюсный (гораздо реже — шестиполюсный) индуктор



Что же касается схемы управления, то она реализуется производителями по-разному. Наиболее распространенный вариант основывается на использовании микросхемы-драйвера с интегрированным датчиком Холла (обычно используются микросхемы Analog Technology ATS276/277 или их клоны), которая осуществляет согласованную коммутацию фаз

индуктора, позволяя последнему индуцировать вращающееся магнитное поле в пространстве статор-ротор и привести в движение ротор. Наряду с простыми схемами, в некоторых вентиляторах могут применяться гораздо более сложные и многофункциональные микросхемы-драйверы, имеющие на борту тахометрический контроль, цепи защиты питающей сети и детектирования стопора крыльчатки (яркий пример — микросхема Sanyo LB1663).

Как уже было отмечено, вал ротора (крыльчатки) может быть закреплен в корпусе вентилятора тремя способами: подшипником скольжения, «комбинированным» подшипником (один подшипник скольжения, другой — качения), двумя подшипниками качения

Начнем с подшипника скольжения. Подшипник скольжения представляет собой примитивную бронзовую втулку, стальной вал ротора закрепляется в подшипнике с помощью пластикового стопорного кольца, дополнительно к этому втулка закупоривается двумя резиновыми прокладками (сальниками), одетыми на вал с каждого ее торца (сальники служат в качестве препятствия вытеканию смазки из зазора вал-подшипник).

Первый недостаток. Так как между внутренней поверхностью подшипника и валом имеется небольшой зазор, в процессе вращения вал крыльчатки «дребезжит» внутри подшипника (иными словами, наблюдаются биения вала). В результате он оказывает сильное абразивное действие на подшипник: в поперечном сечении отверстие подшипника приобретает форму эллипса вместо окружности (наблюдается так называемая эллипсность подшипника). В итоге вал начинает вращаться неустойчиво, весьма значительно повышается уровень шума (в спектре шума вентилятора появляются резкие импульсные всплески — скрипы, стуки и т.п.), а также увеличивается потребление мощности от питающей сети, что сопровождается ощутимым нагревом вентилятора. В случае дисбаланса крыльчатки все это может привести к быстрому разрушению подшипника и выходу вентилятора из строя.

Второй недостаток. Смазка в зазоре вал-подшипник имеет вредную привычку вытекать (несмотря на сальники и прочие предосторожности) из этого самого зазора. Как результат, трущаяся пара вал-подшипник начинает взаимодействовать «насухо», падает скорость вращения крыльчатки и существенно возрастает уровень шума.

<u>Третий недостаток.</u> Для предотвращения эллипсности подшипника и увеличения срока службы вентилятора зазор вал-подшипник стараются сократить. Однако при недостаточной (или некачественной) смазке внутри подшипника старт двигателя затрудняется, что приводит к росту потребления тока и увеличению рассеиваемой мощности (в запущенных случаях — к стопору крыльчатки и выходу вентилятора из строя). В конечном итоге, срок службы вентилятора никак не увеличивается, а наоборот, только сокращается.

Четвертый недостаток. Вентиляторы на подшипниках скольжения не способны надежно функционировать в условиях высокой температуры окружающей среды. Уже при температурах выше 50-60°C срок службы таких вентиляторов резко сокращается, и на практике не превышает 5 тыс. часов.

Обратимся к «комбинированной» конструкции — симбиозу подшипника скольжения и подшипника качения.

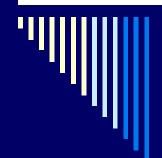
Нельзя сказать, что такой «комбо-драйв» решает все проблемы, тем не менее, положительные сдвиги тут все-таки есть.

Во-первых, подшипник скольжения в такой конструкции играет лишь вспомогательную роль (выступает в качестве своеобразного шунта). Основная нагрузка ложится здесь уже на плечи шарикового подшипника. И так как трение качения меньше трения скольжения, старт двигателя облегчается, рассеваемая вентилятором мощность уменьшается.

Во-вторых, комбинированная конструкция менее восприимчива к весовому дисбалансу крыльчатки. Биения вала в значительной мере гасятся подшипником качения, и вероятность возникновения эллипсности втулки или ее механического разрушения сведена к минимуму (конечно, это имеет место только при условии соблюдения строгих технических норм на производстве и тщательном контроле качества готовых изделий).

В третьих, «комбинированные» вентиляторы могут более или менее нормально функционировать даже в сложных эксплуатационных условиях (при высоких температурах окружающей среды и повышенной влажности воздуха).

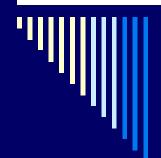
Однако по-прежнему остается нерешенной принципиальная проблема утечки масла из зазора между валом и втулкой, которая может обернуться падением оборотов крыльчатки и повышением уровня шума, производимого вентилятором. В последнее время эту неприятность пытаются замять путем использования вязких или даже консистентных смазок. Но в некоторых изделиях это только усугубляет ситуацию: смазка все равно вытесняется из зазора, или, что еще хуже, загустевает с образованием твердых микрочастиц. В самых запущенных случаях вал просто заклинивает, и вентилятор выходит из строя.

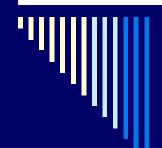

Вентилятор на двух подшипниках качения.

Главнейшее преимущество структуры из двух подшипников качения — это высокая надежность и долговечность вентиляторов на их основе. Два шарикоподшипника гармонично дополняют друг друга, обеспечивают легкий старт двигателя и устойчивое вращение крыльчатки. Потребляемая мощность у таких вентиляторов, как правило, ниже, чем у изделий на комбинированном подшипнике или подшипнике скольжения, что существенно облегчает тепловой режим и повышает надежность их функционирования. Ко всему прочему, вентиляторы на двух подшипниках качения нетребовательны к смазке, проблема утечки масла уничтожена в них как класс.

Второе главное преимущество — вентилятор на двух подшипниках качения представляет собой отлично сбалансированную конструкцию. Спиральная пружина, устанавливаемая на валу между первым подшипником и крыльчаткой, в значительной мере нейтрализует возможный дисбаланс ротора, а остаточные биения вала взаимно компенсируют два подшипника качения. Как результат, вентилятор стабильно функционирует практически в любом положении относительно вектора силы тяжести. Наконец, третье главное преимущество — вентиляторы на двух подшипниках качения способны надежно и долговременно функционировать в условиях очень высоких температур окружающей среды (вплоть до 70-90°С)

Единственный серьезный недостаток таких вентиляторов — это их высокая стоимость. Но справедливости ради следует отметить, что в технологическом отношении высококачественные миниатюрные подшипники качения являются очень сложными и трудоемкими изделиями (стоимость одного высокоточного подшипника качения может достигать 3-5 долларов и даже выше, в то время как стоимость миниатюрного подшипника скольжения обычно не превышает 10 центов).


Реализация систем воздушного охлаждения СРU


Реализация систем воздушного охлаждения СРU



Реализация систем воздушного охлаждения компонентов ПК

