## Тема урока:

# 3HAKOMЬTECЬ -ПАРАМЕТРЫ!



## ЦЕЛЬ УРОКА

- Знакомство с параметрами.

- Рассмотреть различные способы решения задач с параметрами.

### ПЛАН

- І. Организационний момент.
- II. <u>Объяснение нового материала в форме</u> <u>лекции.</u>
- III. Решение задач с параметрами.
  - IV. Подведение итогов.
  - V. <u>Домашнее задание.</u>





### ЭПИГРАФ К

«Многие вещи кам не понятны не потому, что наши понятия слабы, но потому, что многие вещи не входят в круг наших понятий».

«Параметры – это сложно, но важно для вас»!

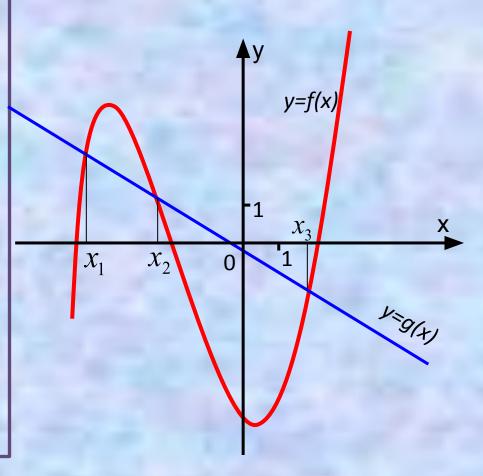


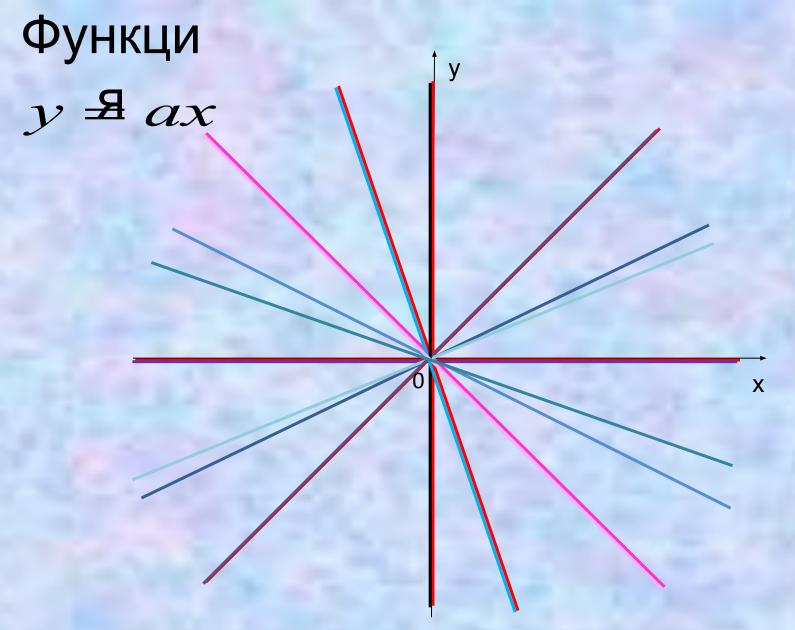


## Графический способ

- При решении уравнения
   <sub>f(x)=g(x)</sub> графическим способом
   строятся графики функций
   у=f(x) и y=g(x) в одной системе
   координат.
- Как известно, число корней уравнения совпадает с количеством точек пересечения графиков построенных функций.
- Если график функции не зависит от параметра, то он неподвижен, а если зависит- то представляет собой семейство графиков, иначе -

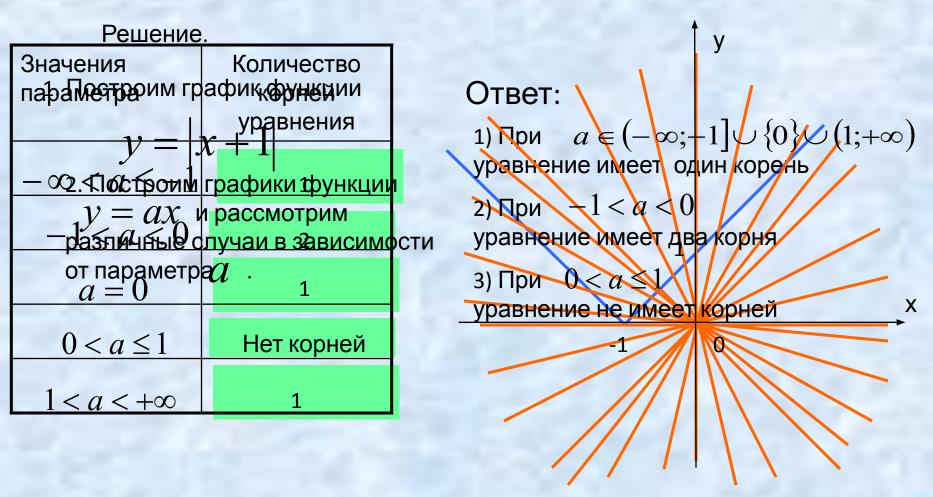
«подвижный» график.





Графики таких функций – семейство прямых, проходящих через начало координат.

# Задача. Сколько корней имеет уравнение $|x+1|=\alpha x$ для каждого из значений параметра ?





#### Задача. Решить уравнение

$$x^4 - 2ax^2 + a^2 - 1 = 0$$

• Решение.

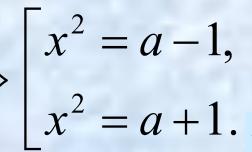
Данное уравнение четвертой степени относительно переменной x и является квадратны относительно

параметра 
$$x^4 - 2ax^2 + a^2 - 1 = 0$$

$$a^2 - 2x^2a + x^4 - 1 = 0$$

$$a_{D_2} = 4x^2 \pm 2 2 = 4x^4 - 2 + 1, \Leftrightarrow \begin{cases} x^2 = a - 1, \\ 4 = x^2 - 1; \end{cases} \Leftrightarrow \begin{cases} x^2 = a - 1, \\ x^2 = a + 1. \end{cases}$$







# Возможны различные случаи. Результаты исследования этих случаев запишем в таблицу:

| $x^2 = a - 1$ 0 + $x^2 = a + 1$ - $x = 0$ $x_1 = \sqrt{a + 1}$ , $x_2 = 0$ $x_1 = 0$ $x_2 = 0$ $x_2 = 0$ $x_3 = 0$ $x_4 = 0$ $x_4 = 0$ $x_5 = 0$ $x_5 = 0$ $x_6 = 0$ | а             | $(-\infty;-1)$ | -1         | (-1;1) | 1                 | $(1;+\infty)$                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|------------|--------|-------------------|--------------------------------------------------------|
| $x$ Нет $x_1 = 0$ $x_2 = 0$ $x_3 = \sqrt{a+1}$ , $x_4 = 0$ $x_{1,2} = \pm \sqrt{a-1}$                                                                                | $x^2 = a - 1$ | -              | ı          | -      | 0                 | +                                                      |
| $x_1 = \sqrt{a+1},$ действитель- $x_2 = 0$ $x_1 = \sqrt{a+1},$ $x_2 = \sqrt{a+1}$                                                                                    | $x^2 = a + 1$ | -              | 0          | +      | +                 | +                                                      |
| $x_{3} = -\sqrt{2}$                                                                                                                                                  | X             | действитель-   | $\chi = 0$ |        | $x_2 = \sqrt{2},$ | $x_{1,2} = \pm \sqrt{a-1},$ $x_{3,4} = \pm \sqrt{a+1}$ |

ОТВЕТ: если а<-1, то действительных корней нет;

если а = -1, то 
$$x=0$$
 если -1x\_1=\sqrt{a+1}, \ x\_2=-\sqrt{a+1} если а=1, то  $x_1=0, \ x_2=\sqrt{2}, \ x_3=-\sqrt{2}$  если а>1,  $x_{1,2}=\pm\sqrt{a-1}, \ x_{3,4}=\pm\sqrt{a+1}$  то



#### При каких значениях параметра Р функция

$$y = \sqrt{(4-p)x^2 - 5x + \frac{5}{8}(1-p)}$$
 определена при всех хє $R$ ?

#### Решение.

Область определения функции - множество действительных чисел, удовлетворяющих условию:  $p)x^2 - 5x + \frac{5}{8}(1-p) \ge 0$ 

**Какие условия** должны выполняться, чтобы **решением** этого неравенства являлась вся числовая прямая?

$$\begin{cases} D \le 0, \\ 4 - p > 0 \end{cases} \Leftrightarrow \begin{cases} 25 - 4 \cdot \frac{5}{8} (1 - p)(4 - p) \le 0, \\ p < 4 \end{cases} \Leftrightarrow \begin{cases} p^2 - 5p - 6 \ge 0, \\ p < 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} p \le -1, \\ p \ge 6, & \Leftrightarrow p \le -1. \end{cases}$$
 Other:  $(-\infty; -1].$ 

## Домашнее задание

- 1. При каких значениях в уравнении  $x^2 + 2(b + 1)x + 9 = 0$  имеет два различных положительных корня.
- При каком значении m сумма квадратов корней уравнения х² + 2mx + m 1 = 0 минимальна?

Дальнейших успехов!!!



СПАСИБО!!!