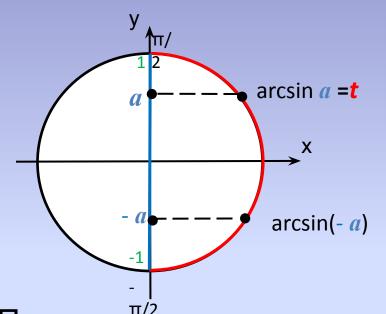

Тригономет

Тригонометрические уравнения и неравенства

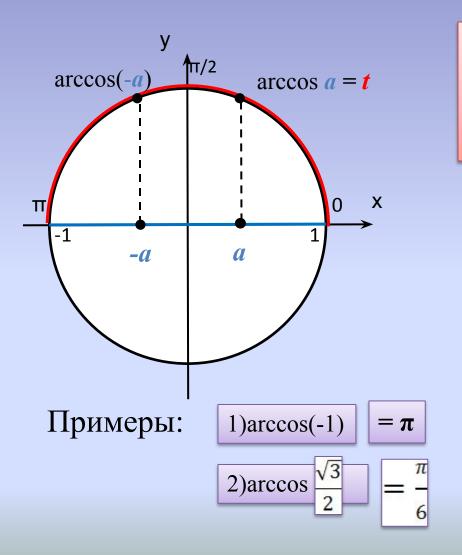

$$asinx + bcosx = 0$$

$$asin^2x + c \cdot sinxcosx + bcos^2x = 0$$

Повторим значения синуса косинуса

Арксинус

Арксинусом числа a называется такое число (угол) t из $[-\pi/2;\pi/2]$, что $sin\ t = a$. Причём, $|a| \le 1$.


 $\arcsin(-a) = -\arcsin a$

Примеры
$$\frac{1}{1}$$
 arcsin $\frac{1}{2} = \frac{\pi}{6}$

$$2)arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$

$$3)arcsin0 = 0$$

Арккосинус

Арккосинусом числа a называется такое число (угол) t из $[0;\pi]$, что $\cos t = a$. Причём, $|a| \le 1$.

 $\arccos(-a) = \pi - \arccos a$

При каких значениях х имеет смысл выражение:

$1.\arcsin(2x+1)$

1)
$$-1 \le 2x-1 \le 1$$

 $-2 \le 2x \le 0$
 $-1 \le x \le 0$
Otbet: [-1;0]

$3.\arccos(x^2-1)$

$$-1 \le x^2 - 1 \le 1$$

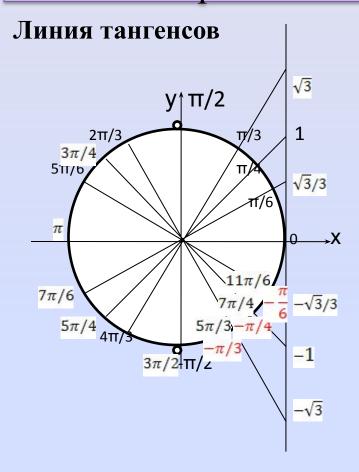
 $0 \le x^2 \le 2$
Otbet:
 $[-\sqrt{2}; \sqrt{2}]$

$2.\arccos(5-2x)$

2)
$$-1 \le 5 - 2x \le 1$$

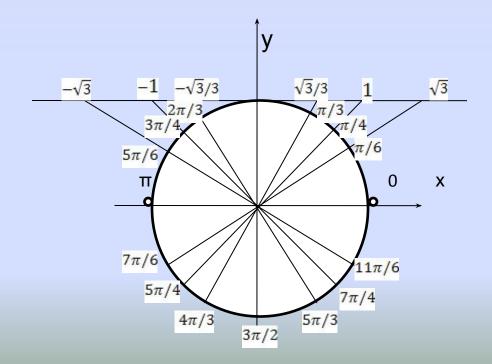
 $-6 \le -2x \le -4$
 $2 \le x \le 3$
Otbet: [2;3]

$4.\arcsin(4x^2-3x)$

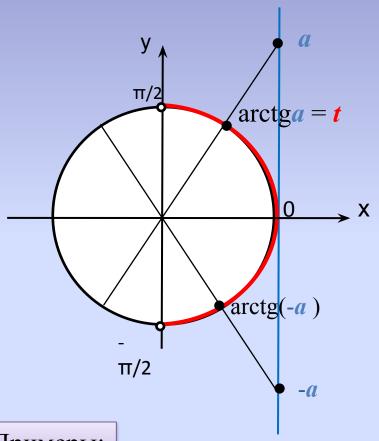

$$-1 \le 4x^{2} - 3x \le 1$$

$$-1 \le 4x^{2} - 3x \le 1$$

$$4x^{2} - 3x \le 1$$


$$4x^{2} - 3x - 1 \le 0$$
Other:
$$-\frac{1}{4}; 1$$

Повторим значения тангенса и котангенса

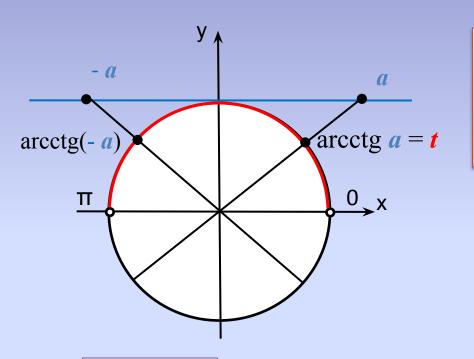


tg t $\in \mathbb{R}$, ho t $\ddagger \pi/2 + \pi k$, k $\in \mathbb{Z}$

ctg t \in R, но t \ddagger 0 + π k, k \in Z Линия котангенсов

Арктангенс

Арктангенсом числа a называется такое число (угол) t из $(-\pi/2;\pi/2)$, что tg t = a. Причём, $a \in \mathbb{R}$.


arctg(-a) = - arctg a

Примеры:

1)
$$\arctan \sqrt{3/3} = \pi/6$$

$$2) \arctan(-1) =$$

Арккотангенс

Арккотангенсом числа a называется такое число (угол) t из $(0;\pi)$, что сtg t = a. Причём, $a \in \mathbb{R}$.

 $arcctg(-a) = \pi - arcctg a$

Примеры:

1)
$$arcctg(-1) = 3\pi/4$$

2)
$$\arctan \sqrt{3} = \pi/6$$

Формулы корней простых тригонометрических уравнений

1.cost =
$$a$$
, где $|a| \le 1$

$$t = \arccos \mathbf{a} + 2\pi k, k \in Z$$
$$t = -\arccos \mathbf{a} + 2\pi k, k \in Z$$

ИЛИ

$$t = \pm arccos \mathbf{a} + 2\pi k, k \in Z$$

Частные случаи

1)
$$\underline{\cos t=0}$$

 $t = \pi/2 + \pi k, k \in \mathbb{Z}$

2)
$$\underbrace{\cos t=1}_{t=0+2\pi k, k\in \mathbb{Z}}$$

3)
$$cost = -1$$

 $t = \pi + 2\pi k, k \in \mathbb{Z}$

2.sint =
$$a$$
, $c \partial e \mid a \mid \leq 1$

$$t = \arcsin \mathbf{a} + 2\pi k, k \in \mathbb{Z}$$

 $t = \pi - \arcsin \mathbf{a} + 2\pi k, k \in \mathbb{Z}$

ИЛИ

$$t = (-1)^k arcsin \mathbf{a} + \pi k, k \in Z$$

Частные случаи

1)
$$\underline{\sin t=0}$$

 $t = 0+\pi k, k\in \mathbb{Z}$

2)
$$\underline{\sin t=1}$$

 $t = \pi/2 + 2\pi k, k \in \mathbb{Z}$

3)
$$\underline{\sin t = -1}$$

 $t = -\pi/2 + 2\pi k, k \in \mathbb{Z}$

3.
$$tgt = a$$
, $a \in \mathbb{R}$

$$t = arctg a + \pi k, k \in \mathbb{Z}$$

4. ctgt =
$$a$$
, $a \in \mathbb{R}$

$$t = \operatorname{arcctg} a + \pi k, k \in \mathbb{Z}$$

Примеры

•

1)
$$cost = -\frac{1}{2}$$
;

2)
$$sint = 0$$
;

t=
$$\pm \arccos(-1/2)+2\pi k$$
, k \in Z
t= $\pm 2\pi/3+2\pi k$, k \in Z

Частный случай:
$$t = 0+\pi k$$
, k€Z

3)
$$tgt = 1$$
;

4) ctgt =
$$-\sqrt{3}$$

$$t = arctg1+\pi k, k \in \mathbb{Z}$$

 $t = \pi/4+\pi k, k \in \mathbb{Z}$.

$$t = \operatorname{arcctg}(\sqrt{3}) + \pi k, k \in \mathbb{Z}$$

 $t = 5\pi/6 + \pi k, k \in \mathbb{Z}.$

Решение простейших уравнений

1)
$$tg2x = -1$$

$$2x = \operatorname{arctg}(-1) + \pi k, k \in \mathbb{Z}$$
$$2x = -\pi/4 + \pi k, k \in \mathbb{Z}$$
$$x = -\pi/8 + \pi k/2, k \in \mathbb{Z}$$

Otbet: $-\pi/8 + \pi k/2$, kEZ.

2)
$$\cos(x+\pi/3) = \frac{1}{2}$$

$$x+\pi/3 = \pm \arccos 1/2 + 2\pi k$$
, $k \in \mathbb{Z}$
 $x+\pi/3 = \pm \pi/3 + 2\pi k$, $k \in \mathbb{Z}$
 $x = -\pi/3 \pm \pi/3 + 2\pi k$, $k \in \mathbb{Z}$

Ответ: $-\pi/3 \pm \pi/3 + 2\pi k$, k \in Z

3)
$$\sin(\pi - x/3) = 0$$

упростим по формулам
приведения
 $\sin(x/3) = 0$
частный случай
 $x/3 = \pi k, k \in \mathbb{Z}$
 $x = 3\pi k, k \in \mathbb{Z}$.
Ответ: $3\pi k, k \in \mathbb{Z}$.

Другие тригонометрические уравнения

1.Сводимые к квадратным $a \cdot \sin^2 x + b \cdot \sin x + c = 0$

Пусть $\sin x = p$, где $|p| \le 1$, тогда $a \cdot p^2 + b \cdot p + c = 0$ Найти корни, вернуться к замене и решить простые уравнения.

2.Однородные

1)Первой степени:

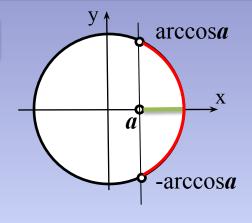
$$a \cdot \sin x + b \cdot \cos x = 0$$

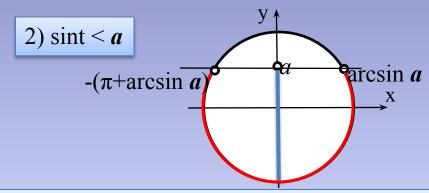
Т.к. sinx и соsх одновременно не равны нулю, то разделим обе части уравнения на соsх. Получим: простое уравнение

$$a \cdot tgx + b = 0$$
 или $tgx = m$

2)Второй степени:

$$a \cdot \sin^2 x + b \cdot \sin x \cdot \cos x + c \cdot \cos^2 x = 0$$

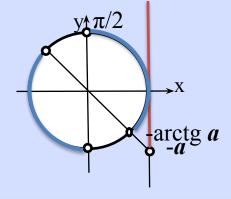

Разделим обе части на $\cos^2 x$.


Получим квадратное уравнение:

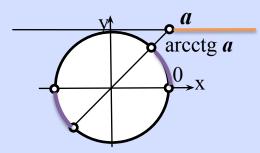
$$a \cdot tg^2x + b \cdot tgx + c = 0.$$

Простые тригонометрические неравенства

1) $\cos t > a$



Otbet: $(-(\pi + \arcsin a) + 2\pi k$; arcsin $a + 2\pi k$), kEZ


Ответ: (-arccos $a+2\pi k$; arccos $a+2\pi k$), kEZ

3) tgt > -a

Ответ: (-arctg $a+\pi k$; $\pi/2+\pi k$), kEZ

4) ctgt > a

Ответ: $(0+\pi k; arcctg a+\pi k), k \in \mathbb{Z}$.