Презентация на тему: Обратные тригонометрические функции

Подготовила: ученица 11 класса «Д»

Шунайлова Марина

Руководители: Крагель Т.П., Гремяченская Т.В.

г. Старый Оскол 2006

Что же такое функция?

- 1) Зависимая переменная
- 2) Соответствие y = f (x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x сответсвует определенное значение другой величины y.

Такое соответствие может быть задано различном образом, например: формулой, графически или таблицей.

С помощью функции математически выражаются многообразные количественные закономерности в природе.

Рассмотрим следующие обратные функции:

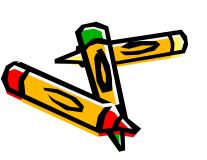
- · X = arcsin y
- · X = arccos y
- · X = arctg y
- · X = arcctg y

Обратная функция -

функция, обращающая зависимость, выражаемую данной функцией. Так, если

y = f(x) — данная функция, то переменная x, рассматриваемая как функция переменной y:

x = j(y), является обратной по отношению к данной функции y = f(x). Напр., $x = \sqrt[3]{y}$ есть обратная функция по отношению к $y = x^3$.



arcsin x

Функция у = $\sin x$, рассматриваемая на промежутке [- $\Pi/2$; $\Pi/2$], имеет обратную функцию, которую называют арксинусом и записывают ч x = $\arcsin y$,

- 1) Область определения промежуток [-1; 1]
 - 2) Множество значений промежуток [-П/2; П/2]
- 3) Эта функция нечетная
- 4) Нули функции: при x = 0
- 5). Промежутки знакопостоянства arcsin x > 0, при $x \in (0;1]$
 - arcsin x< 0 при $x \in [-1; 0)$
 - 6) Функция непрерывна и дифференцируема в каждой точке



arccos x

Функция $y = \cos x$, рассматриваемая на промежутке [0;П], имеет обратную функцию, которую называют арккосинусом и записывают

 $x = \arccos y$

- 1) Область определения промежуток [-1; 1]
- 2) Множество значений промежуток [0 ; П]
- 3) Эта функция не является ни четной ни нечетной
- 4) Нули функции: при x = 1
- 5) Промежутки знакопостоянства arccos > 0, при $x \in [-1;1)$
- 6) Функция непрерывна и дифференцируема в каждой точке

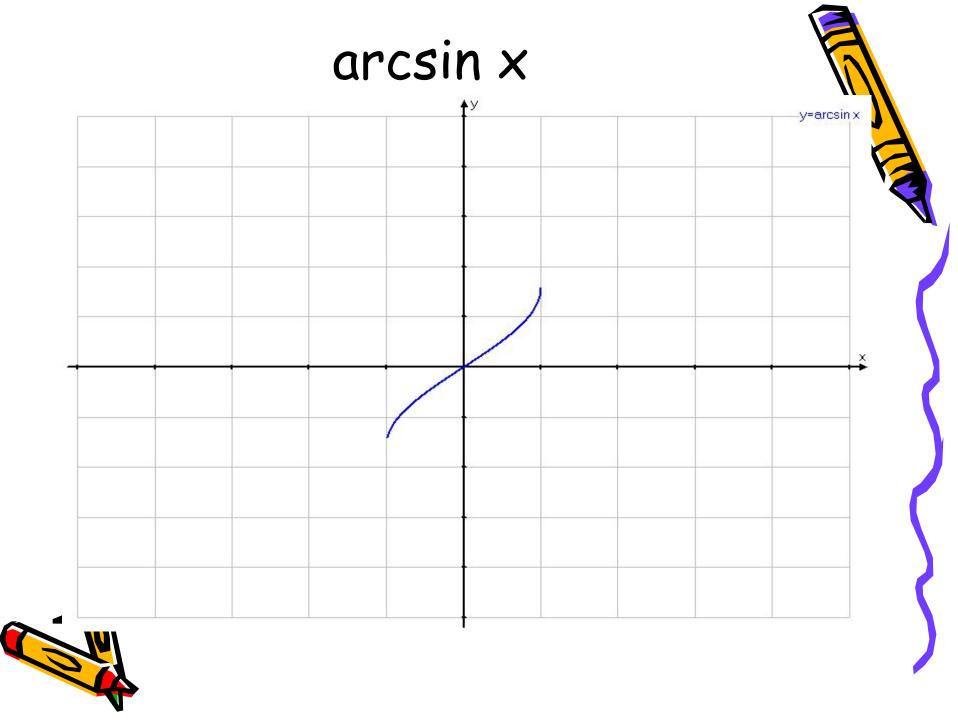


arctg x

Функция у = $tg \times$, рассматриваемая на промежутке (- $\Pi/2$; $\Pi/2$), имеет обратную функцию, которую называют арктангенсом записывают x = arctg y

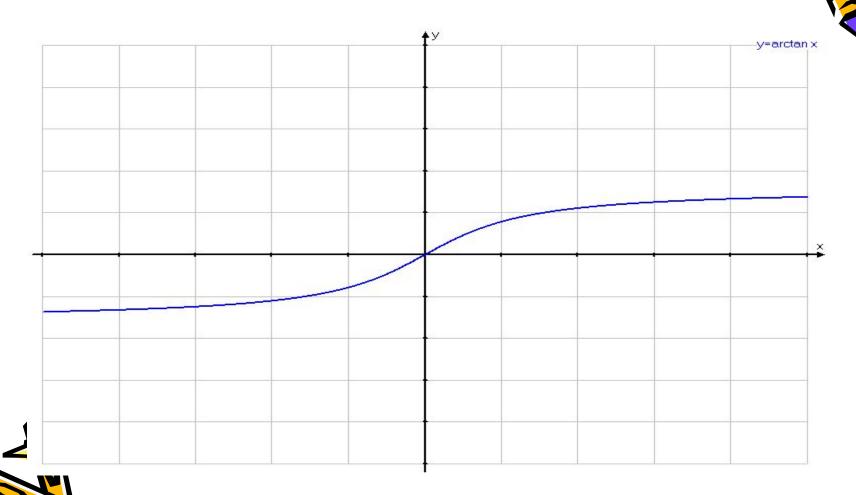
- 1) Область определения вся числовая прямая
- 2) Множество значений промежуток (-П/2;П/2)
- 3) Эта функция является нечетной
- 4) Нули функции: при x = 0
- 5) Промежутки знакопостоянства arctg > 0 при $x \in (0;+\infty)$
 - arctg < 0 при x е (-∞;0)
- 6) Φ ункция непрерывна и дифференцируема при всех х \in R

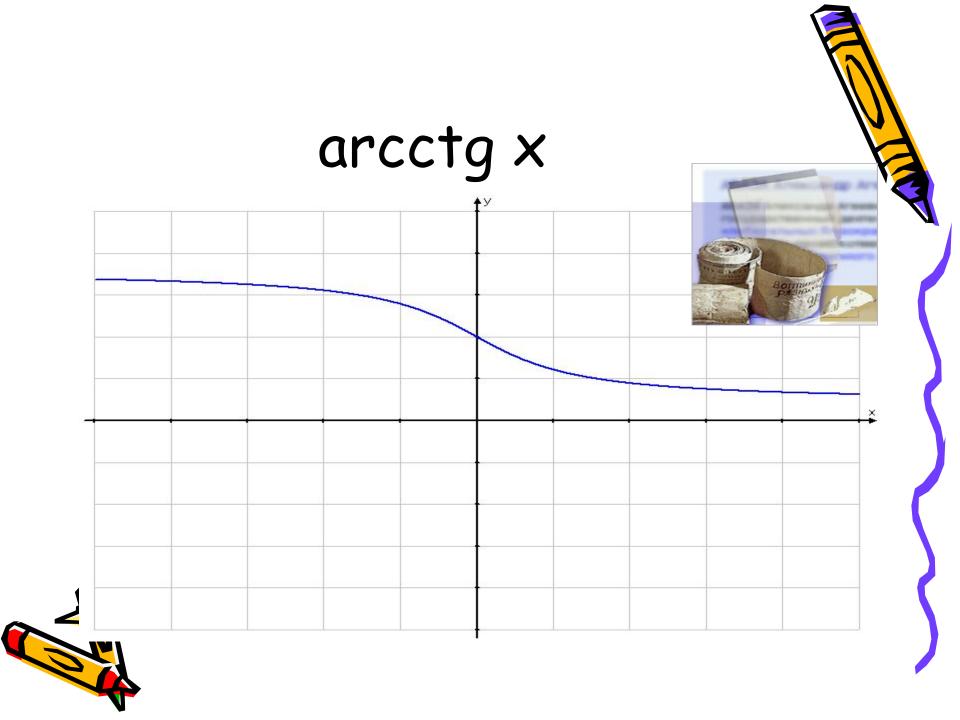
arcctg x


Функция $Y = ctg \times$, рассматриваемая на промежутке (0;П), имеет обратную функцию, которую называют арктангенсом и записывают

 $x = \operatorname{arcctg} y$

- 1) Область определения вся числовая прямая
- 2) Множество значений промежуток (0;П)
- 3) Эта функция не является ни четной ни нечетной
- 4) Φ ункция положительна при всех $x \in R$
- 5) Φ ункция непрерывна и дифференцируема при всех х $\in \mathsf{R}$





arccos x

arctg x

