
Тема урока: «Синус, косинус и тангенс угла»

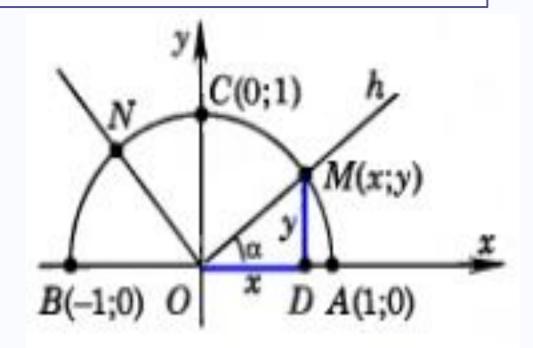
П.п. 93 - 95

Выполнила: студентка 5 курса группы МДИ-108 физико-математического факультета МордГПИ им. М.Е.Евсевьева **Косырева Татьяна Николаевна**

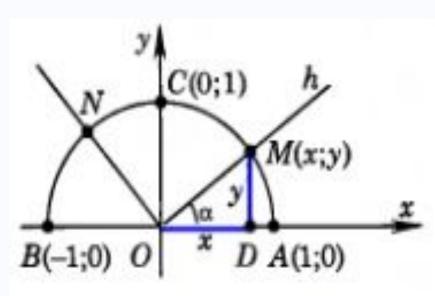
Найти:

1 вариант

 $\sin\angle A$


2 вариант

$$\cos \angle B$$


$$\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$

Единичная полуокружность

Определение. Полуокружность называется **единичной**, если ее центр находится в начале координат, а радиус равен 1.

Синус, косинус, тангенс угла

$$0^{\circ} \le \alpha \le 180^{\circ}$$

Синус угла — ордината у точки $M = \sin \alpha = \frac{MD}{OM}$, MD = y, $\sin \alpha = y$.

Косинус угла — абсцисса х точки M $\cos \alpha = \frac{oD}{oM}$, OD = x, $\cos \alpha = x$.

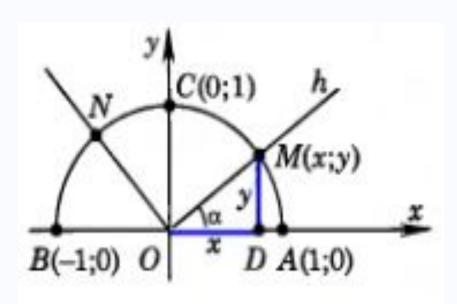
Тангенс, катангенс угла

T. k.
$$tg = \frac{y}{x}$$
, $\alpha tg = \frac{\sin \alpha}{\cos \alpha}$, $ctg = \frac{\cos \alpha}{\sin \alpha}$

Синус, косинус, тангенс угла

Так как координаты (x; y) заключены в промежутках

$$0 \le y \le 1, -1 \le x \le 1,$$

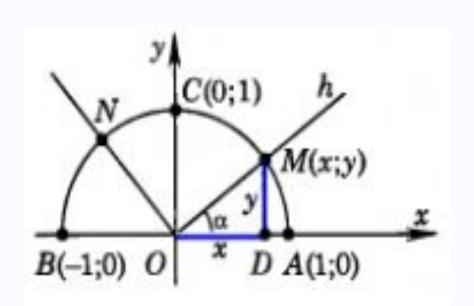

то для любого α из промежутка

$$0^{\circ} \le \alpha \le 180^{\circ}$$

справедливы неравенства:

$$0 \le \sin \alpha \le 1$$
,
- $1 \le \cos \alpha \le 1$

Значения синуса и косинуса для углов о°, 90° и 180°



Так как точки A, C и B имеют координаты A (1; 0), C (0; 1), B (-1; 0), то

$$\sin 0^{\circ} = 0,$$

 $\sin 90^{\circ} = 1,$
 $\sin 180^{\circ} = 0,$

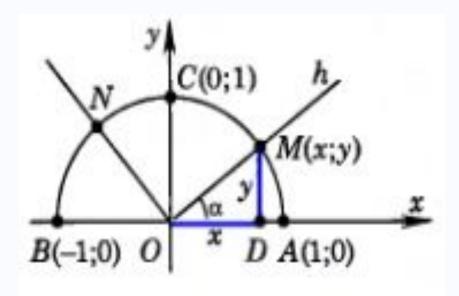
$$\cos 0^{\circ} = 1,$$

 $\cos 90^{\circ} = 0,$
 $\cos 180^{\circ} = -1$

Значения тангенса и катангенса о°, 90° и 180°

Т.к. $tg = \frac{\sin \alpha}{\cos \alpha}$, то при $\alpha = 90^{\circ}$ тангенс угла α не определен.

$$tg o \circ = o, tg 180 \circ = o.$$


Т.к. $ctg = \frac{\cos \alpha}{\sin \alpha}$, то при $\alpha = 0^{\circ}$, $\alpha = 180^{\circ}$ катангенс угла α не определен

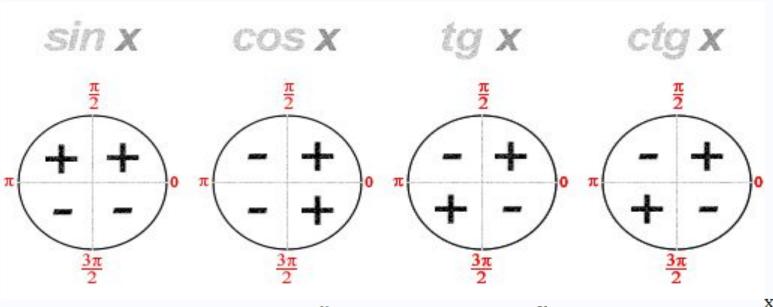
$$ctg 90^{\circ} = 0.$$

Тригонометрическая таблица

градусы	00	30°	45 ⁰	60°	90°	120°	135 ⁰	150°	180°	270°	360°
радианы	0	<u>П</u> 6	<u>П</u>	3	<u>П</u> 2	<u>2Π</u> 3	<u>3∏</u>	<u>5∏</u>	П	<u>3∏</u>	2Π
Sin x	0	1 2	<u>√2</u> 2	<u>√3</u> 2	1	<u>√3</u> 2	2	1 2	0	-1	0
Cos x	1	<u>√3</u> 2	2	1 2	0	- 1	$-\frac{\sqrt{2}}{2}$	- \frac{\sqrt{3}}{2}	-1	0	1
tg x	0	1/3	1	√3	-	-√3	-1	$-\frac{1}{\sqrt{3}}$	0	_	0
ctg x	_	√3	1	1/3	0	$-\frac{1}{\sqrt{3}}$	- 1	-√3	_	0	_

Основное тригонометрическое тождество

Уравнение окружности


$$\mathbf{x^2} + \mathbf{y^2} = \mathbf{1}$$

$$\sin = x, \cos = y$$

$$0^{\circ} \le \alpha \le 180^{\circ}$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

Знаки синуса, косинуса тангенса, катангенса

$$\sin \alpha = \frac{y}{R}$$

$$\cos \alpha = \frac{x}{R}$$

$$tg \alpha = \frac{3}{3}$$

$$\operatorname{ctg} \alpha = \frac{x}{y}$$

I, II
$$\alpha - \sin \alpha > 0$$
, III, IV $\alpha - \sin \alpha < 0$

I , IV
$$u$$
 - $\cos \alpha > 0$, I , III u - $tg \alpha > 0$, I , III u - $ctg \alpha > 0$, II, III u - $ctg \alpha > 0$, II, IV u - $tg \alpha < 0$ II, IV u - $tg \alpha < 0$

I, III
$$\alpha$$
 - ctg α > 0, II, IV α - ctg α < 0

Формулы приведения

$$\sin (90^{\circ} - \alpha) = \cos \alpha$$
 $\cos (90^{\circ} - \alpha) = \sin \alpha$ (5) при $0^{\circ} \le \alpha \le 90^{\circ}$,
 $\sin (180^{\circ} - \alpha) = \sin \alpha$
 $\cos (180^{\circ} - \alpha) = -\cos \alpha$ (6) при $0^{\circ} \le \alpha \le 180^{\circ}$

Формулы для вычисления координат точки

 $M(\cos\alpha; \sin\alpha)$. A(x;y) — произвольная точка

 $\sin \alpha = y$, $\cos \alpha = x$ M($\cos \alpha$; $\sin \alpha$), \overrightarrow{OM} ($\cos \alpha$; $\sin \alpha$), \overrightarrow{OA} (x;y)

По лемме о коллинеарных векторах $\overrightarrow{OA} = \overrightarrow{OA} \cdot \overrightarrow{OM}$, поэтому $x = \overrightarrow{OA} \cdot \cos \alpha$,

 $y = OA \cdot \sin \alpha$.

Домашнее задание

§1, пп. 93 - 95, №№ 1014, 1015 (б, г)

УРОК ОКОНЧЕН ДО СВИДАНИЯ!

Используемые источники:

- 1) Атанасян, Л. С. Геометрия 7-9 классы: учеб. для общеобразовательных учреждений / Л. С. Атанасян, В. Ф. Бутузов,
- С. Б. Кадомцев и др. 20-е изд. –М. : Просвещение, 2012. 384 с. : ил.;
- 2) Саранцев, Г. И. «Методика обучения математике в средней школе: Учебное пособие для студентов мат. спец. педвузов и университетов» / Г. И. Саранцев. М.: Просвещение, 2002. 224 с.;
- 3) Внеклассный урок -
- http://raal100.narod2.ru/geometriya/sinus_kosinus_tangens/
- 4) Тригонометрическая таблица –
- http://www.ankolpakov.ru/wp-content/uploads/2012/08/Таблицазначений-тригонометрических-функций.gif;
- 5) Рисунок «Знаки тригонометрических функций» http://www.dpva.info/Guide/GuideMathematics/GuideMathematicsFig uresTables/TrygynometricsSigns/