Проект

Задачи на смеси, растворы и сплавы

Елина А.В.

Проблема:

задачи на смеси, растворы и сплавы вызывают большие затруднения у выпускников.

Цель:

научится решать задачи на смеси, растворы и сплавы, а также составить дидактический материал.

Задачи:

- 1. Собрать теоретический материал.
- 2. Рассмотреть методы решения задач.
- 3. Создать дидактический материал.

Как известно, в основе методики решения этих задач лежит связь между тремя величинами в виде прямой и обратной зависимостей:

$$S = VT$$
 $T = \frac{S}{V}$ $V = \frac{S}{T}$

- для пути S, времени T и скорости V;

$$A = VT$$
 $T = \frac{A}{V}$ $V = \frac{A}{T}$

- для количества работы A, времени T и производительности V

Кроме того, применяются некоторые правила:

сложение или вычитание скоростей при движении в движущейся среде, сложение или вычитание производительностей при совместной работе и др.

Основные поня 3adayax Ha CMeC растворы и спл

- «Смесь»
- «Чистое вещество»
- «Примесь»
- Доли чистого вещества в смеси $\langle a \rangle$
- Чистое вещество «m»
- Общее количество $\langle M \rangle$

$$a = m : M$$
 $m = a M$ $M = m : a$

Отметим, что $0 \le a \le 1$, ввиду того, что $0 \le m \le M$. Случай a=0 соответствует отсутствию выбранного чистого вещества в рассматриваемой смеси (m=0), случай a=1 соответствует тому, что рассматриваемая смесь состоит только из чистого вещества (m=M).

Понятие доли чистого вещества в смеси можно вводить следующей условной записью:

Доля чистого <u>вещества в смеси</u>

Количество чистого вещества в смеси

Общее количество смеси

Процентное содержание чистого вещества в смеси — $\langle c \rangle$

$$c = a \cdot 100\%$$
, $a = c:100\%$

При решении задач следует руководствоваться тем, что при соединении (разъединении) смесей с одним и тем же чистым веществом количества чистого вещества и общие количества смесей складываются (вычитаются). Складывать и вычитать доли и процентные содержания нельзя.

Основные этапы решения

- Выбор неизвестной (или неизвестных).
- II. Выбор чистого вещества.
- III. Переход к долям.
- IV. Отслеживание состояния смеси.
- v. Составление уравнения.
- VI. Решение уравнения (или их системы).
- VII. Формирование ответа.

В ходе осуществления этих этапов рекомендую ввести следующую таблицу:

Состояние	Количество	Общее	
смеси	чистого	количество	Доля <i>(а)</i>
	вещества (т)	смеси <i>(М)</i>	
1			
2			
•••			
Итоговое			
состояние			

Примеры решения 3

Задача 1. Морская вода содержит 5% соли по массе. Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация составляла 1,5%?

Решение:

- 1. Пусть требуется добавить х кг пресной воды.
- 2. За чистое вещество примем соль. Тогда морская вода это смесь с 5%-ным содержанием чистого вещества, пресная вода с 0%-ным содержанием чистого вещества.
- 3. Переходя долям, получаем, что доля соли в морской воде составляет 0,05, доля соли в пресной воде равна 0, доля в смеси, которую нужно получить, 0,015.

4.Происходит соединение смесей.

Состояние смеси	т (кг)	М (кг)	a
1	0,05 · 30	30	0,015
2	$0 \cdot x$	X	0
3	0,05 • 30	30 + x	0,015

5. Исходя из третьей строки таблицы, составим уравнение m = a M:

 $0.05 \cdot 30 = 0.015(30 + x).$

- 6. Решим полученное уравнение и находим x = 70.
- 7. В данной задаче не содержалось требования найти процентное содержание какого-либо вещества, поэтому нет необходимости переводить доли в процентные содержания.

Ответ: 70 кг.

Задача 2. Смешали 30%-ный раствор соляной кислоты с 10%-ным и получили 600 г 15%-ного раствора. Сколько граммов каждого вещества было взято?

Решение: Пусть взяли \mathbf{x} г первого раствора, тогда второго раствора (600 – \mathbf{x}) г.

Состояние	m (z)	М (г)	a
смеси			
I	0,3 x	X	0,3
II	0,1(600 – x)	600 - x	0,1
I + II	0,3 x + 0,1(600 - x)	600	0,15

Тогда $0.3 x + 0.1(600 - x) = 0.15 \cdot 600$, откуда x = 150, 600 - x = 450.

Ответ: 150 г 30%-ного раствора, 450 г 10%-ного раствора.

Пример усложненной з

Задача 3. Имеются два сплава, состоящие из цинка, меди и олова. Известно, что первый сплав содержит 25% цинка, а второй – 50% меди. Процентное содержание олова в первом сплаве в 2 раза выше, чем во втором. Сплавив 200 кг первого и 300 кг второго, получили новый сплав, в котором оказалось 28% олова. Определить, сколько килограммов меди содержится в получившемся новом сплаве.

Решение. Пусть x — доля олова во II сплаве, тогда 2x — доля олова в I сплаве. Сначала определим долю олова в данных сплавах. Для этого заполним таблицу, выполнив переход от процентных содержаний к долям.

	тояние	т (кг)	М (кг)	a
Ci	меси			
	Цинк	0,25 · 200		0,25
I	Медь	200(1 - (0,25 + 2x))	200	1-(0,25+2x)
	Олово	$2 \cdot \boldsymbol{x} \cdot 200$		2 x
II	Цинк	(1-(0,5+x))300	300	1 - (0,5 + x)
	Медь	0,5 · 300		0,5
	Олово	x · 300		x
T. TT	Цинк	$0.25 \cdot 200 + (1 - (0.5 + x))300$	500	?
I+II	Медь	$(1-(0,25++2x))200+0,5\cdot300$	500	?
	Олово	$2 \cdot \boldsymbol{x} \cdot 200 + \boldsymbol{x} \cdot 300$		0,28

Становится очевидным, что уравнение можно составить по последней строке таблицы, используя зависимость m = a M:

$$2 \cdot x \cdot 200 + x \cdot 300 = 0,28 \cdot 500$$
, откуда $x = 0,2$.

Таким образом, доля олова в первом сплаве будет 0,4, а во втором -0,2.

Теперь выберем в качестве чистого вещества медь, и пусть y — доля меди в получившемся сплаве.

Сосчитаем по таблице долю меди в первом сплаве

$$1 - (0,25 + 0,4) = 0,35.$$

Составим таблицу (относительно меди).

Состояние	т (кг)	М (кг)	a
смеси			
I	0,35 · 200	200	0,35
II	0,5 · 300	300	0,5
I + II	$0,35 \cdot 200 + 0,5 \cdot 300$	500	y

Составим уравнение по последней строке таблицы, используя зависимость m = a M:

$$0,35 \cdot 200 + 0,5 \cdot 300 = 500y$$
. Находим $y = 0,44$.

Доля меди в получившемся сплаве — 0,44. Выполним требование задачи и найдем количество меди: $m = 500 \cdot 0,44 = 220$.

Ответ: 220 кг.

SAKTHUGHAG

Я на также решать задачи на смеси, растворы и сплавы и эти знания пригодятся мне на ЕГЭ. Также я могу научить этому своих одноклассников.

Эти знания помогут мне на уроках химии и в быту, например, при консервировании.