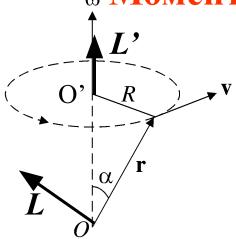

Вес тела и сила тяжести

Весом тела называется сила, с которой тело действует на опору или подвес вследствие гравитационного притяжения.

В условиях Земли – вследствие притяжения к Земле. Вес тела не надо путать с силой тяжести P = mg, где g одинаковое для всех тел вблизи вращающейся (т.е. во вращающейся системе отсчета) поверхности Земли ускорение, называемое ускорением свободного падения. Р хотя и обусловлена притяжением тел к Земле но результат двух сил и не равна силе гравитационного притяжения тела $\mathbf{F}_{\mathbf{n}}$ из-за действия $\mathbf{F}_{\mathbf{n}}$

Различие силы тяжести и веса


На любое тело, находящееся на поверхности Земли (кроме полюса) действует центробежная сила инерции $\mathbf{F}_{\mathbf{цб}}$, что и приводит к некоторому

различию силы тяжести \mathbf{P} и силы гравитационного притяжения $\mathbf{F}_{\mathbf{g}}$ как по величине, так и по направлению. Те во вращающейся системе отсчета складываем два вектора

$$P = mg = F_g + F_{u\delta}$$
 $|F_{u\delta}| = m\omega_3^2 R_3 \cos \phi$

Результирующая сила направлена не к центру Земли. Максимальное различие получается **на экваторе** и составляет 0.3% от силы **P**. На экваторе на тело массой 1 кг действует $\mathbf{F}_{\mathbf{n}\mathbf{6}}$ =0.0337H=1/291 mgh. Т.е. в ряде случаев ей можно пренебречь. Угол между направлениями векторов **P** и $\mathbf{F}_{\mathbf{g}}$ также очень мал и его тах значение равно 0.0018 рад (на широте 45 градусов).

момент инерции МТ относительно оси вращения

Величина угловой скорости $\omega = \frac{d\varphi}{dt} = \overline{\varphi}$

$$\boldsymbol{\omega} = \frac{d\boldsymbol{\varphi}}{dt} = \boldsymbol{\phi}$$

Изменение угловой скорости со временем определяется вектором углового ускорения

$$\boldsymbol{\beta} = \lim_{\Delta t \to 0} \frac{\Delta \boldsymbol{\omega}}{\Delta t} = \boldsymbol{\omega}$$

При вращении по окружности момент импульса $\operatorname{MT} L$ относительно точки O: L = [r, mv] и направления векторов L и ω не совпадают если точка О не в центре окружности. Если движение идет по окружности и точка О' в центре окружности то по направления векторов L' и ω совпадают.

L'= Rmvsin
$$90^0$$
 = Rmv = Rm· ω R = mR² ω = I ω

Скалярная величина $I = mR^2$ называется моментом инерции материальной точки относительно оси вращения.

Уравнение моментов для материальной точки

Как уже говорилось момент импульса MT, двигающейся по окружности:

$$L = mR^2 \omega = I\omega$$

Производная по времени равна:

$$\frac{d\mathbf{L}}{dt} = \mathbf{I}\frac{d\boldsymbol{\omega}}{dt} = \mathbf{I}\boldsymbol{\beta}$$

В соответствии с законом изменения момента импульса для МТ получаем:

$$I\!\!eta = \sum_i N_{ ext{iвнеш}}$$

Абсолютно твердое тело

Под твердым телом будем подразумевать абсолютно твердое тело, в котором расстояния между любыми двумя точками неизменны. Твердое тело можно представить как совокупность большого количества очень малых масс Δm_i , которые можно считать MT. Теорема о движении центра масс твердого тела: центр масс твердого тела движется так, как двигалась бы материальная точка с массой, равной массе тела, и к которой приложены все внешние силы, действующие на тело. Т.е. раньше мы говорили о МТ и о систем МТ и ее центре масс теперь еще и об абсолютно твердом теле.

Момент инерции твердого тела

Твердое тело можно представить как систему MT, удерживаемых внутренними силами на неизменных расстояниях друг от друга и по аналогии с MT записать: dL

по аналогии с MT записать: $\frac{dL}{dt} = \sum N_{\it внеш}$

Пусть момент импульса i-й частицы , r_i — радиус окружности, по которой движется \mathbf{MT} $\Delta \mathbf{m}_i$ относительно оси вращения тела. Направление \mathbf{L}_i относительно оси вращения всех точек тела одинаковое, так как в каждый момент времени направление и величина угловых скоростей всех точек одинаковы (тело твердое).

$$\boldsymbol{L} = \sum \boldsymbol{L}_i = \boldsymbol{\omega} \sum \Delta m_i \boldsymbol{r}_i^2 = I \boldsymbol{\omega}$$

Величина $I = \sum \Delta m_i r_i^2$ называется моментом инерции твердого тела относительно данной оси. Направление векторов L и ω совпадают только в случае симметричного тела.

Уравнением моментов

Заменив в выражении для кинетической энергии $T = \frac{mv^2}{2}$ массу на момент инерции I, а скорость v на угловую скорость ω получим кинетическую энергию вращающегося вокруг неподвижной оси тела или просто подставив $v = \omega R$:

$$T = \frac{1}{2}I\omega^2$$

Подставим момент импульса тела $oldsymbol{L} = \mathbf{I} oldsymbol{\omega}$

$$\frac{d\boldsymbol{L}}{dt} = \mathbf{I}\boldsymbol{\beta} = \sum \boldsymbol{N}_{\mathsf{внеш}}$$

Это закон изменения момента импульса твердого тела или основной закон динамики для вращения твердого тела вокруг неподвижной оси. Как и в случае с МТ можно сопоставить все величины для поступательного и вращательного движения.

Скамья Жуковского T=const

Фигуристка на льду и Торнадо: Что общего?

Сохранение кинетической энергии? Приблизительно!

Торнадо – увеличивается масса того, что поднято с Земли - увеличивается момент инерции и увеличивается кинетическая энергия. Как зависит I от радиуса торандо ? Узнаем чуть позже ~ \mathbb{R}^2

Куда расходуется кинетическая энергия? Вспомним

машины, цунами, лавины.....

Условия равновесия твердого тела

В общем случае для равновесия абсолютно твердого тела необходимо выполнение двух условий.

1. Сумма всех внешних сил, приложенных к телу, должна быть равна нулю:

$$\sum_{i} F_{ehew} = 0$$

2. Сумма моментов внешних сил относительно любой точки должна быть равна нулю:

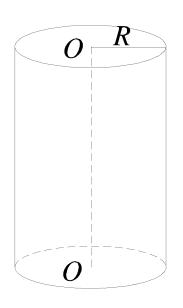
$$\sum_{i} N_{enew} = 0$$

Момент инерции в природе

Самолеты убирают шасси во время полета, а, например, пчелы, напротив, вытягивают вперед задние лапки для того, чтобы лететь устойчиво с большей скоростью.

При максимальной скорости в 7.25 метров в секунду пчелы теряют вращательную устойчивость. Это говорит о том, что скорость пчелы ограничивает не сила мускулов или амплитуда машущих крыльев, а наклон тела и умение балансировать в неустойчивом положении. Т.е. определенной скорости пчелы умеют управлять своим моментом инерции и изменять моментом импульса так чтобы обеспечить условия равновесия (нулевую сумму моментов внешних сил).

Механика поступательного и вращательно движения относительно неподвижной оси


Все выражения для МТ и для твердого тела внешне очень похожи. 2-го закон Ньютона:

$$rac{\mathrm{d} \mathbf{p}}{\mathrm{d} t} = \mathbf{m} \boldsymbol{a} = \sum_{i} \boldsymbol{F}_{i}$$
 $\qquad \qquad rac{dL}{dt} = \mathbf{I} \boldsymbol{\beta} = \sum_{i} \boldsymbol{N}_{\mathrm{івнеш}}$

Аналогами также являются:

координата	X	- угол ф,
линейной скорости	v	- угловая скорость ω ,
линейного ускорения	a	- угловое ускорение β ,
массы	m	- момент инерции I,
силы	\boldsymbol{F}	- момент силы N ,
импульса	p	- момент импульса $\boldsymbol{L},$
кинетическая энергия	$mv^2/2$	- кинетическая энергия І $\omega^2/2$,
работа	$dA = F_s d$	ls - работа dA=N _ω dф
мощность	$P=F_{v}v$	- $P=N_{\omega}\omega$

Момент инерции полого цилиндра

Найдем момент инерции полого цилиндра относительно его оси симметрии *OO*.

$$I = \sum \Delta m_i r_i^2 = R^2 \sum \Delta m_i = R^2 m = mR^2$$

где т — масса цилиндра.

Итак, момент инерции полого цилиндра прямо не зависит от высоты этого цилиндра (косвенно естественно зависит так как чем больше высота тем больше площадь и масса). Точно также выглядит и выражение для момента инерции обруча.

Момент инерции сложных тел

Для полного определения момента инерции более сложных тел выражение $I = \sum \Delta m_i r_i^2$ следует уточнить, устремив элемент Δm_i к нулю и найдя соответствующий предел:

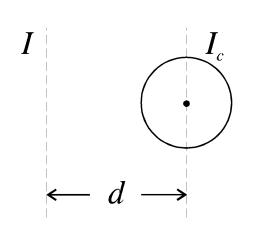
$$I = \lim_{\Delta m \to 0} \sum_{i=1}^{\infty} r_i^2 \Delta m_i$$

Как известно, такой предел называется интегралом:

$$I = \int r^2 dm = \int \rho \, r^2 dV$$

Интегрирование производится по всему объему тела V. Если плотность тела р постоянна, то р можно вынести из под знака интегрирования. Но даже для яйца (желток, белок и скорлупа имеют разную плотность)! Земля?

Момент инерции сплошного цилиндра и однородного шара


Момент инерции сплошного однородного цилиндра относительно оси симметрии ОО можно найти разбив его на цилиндры радиуса r и толщиной dr. Так как объем одного слоя равен $dV=2\pi rhdr$ то

$$I = \int r^{2}dm = \int r^{2}\rho \, dV = \int r^{2}\rho \, 2\pi \, r \, h \, dr = 2\pi \, \rho \, h \int r^{3}dr = 2\pi \, \rho \, h \frac{R^{4}}{4} = \rho \, (\pi \, R^{2} \, h) \frac{R^{2}}{4} = \rho V \frac{R^{2}}{4} = \frac{mR^{2}}{2}$$

р- плотность, dr и h —толщина и высота цилиндра . А у полого цилиндра было mR². Чем удаленнее масса от центра тем больше І. При равных m и R у полого момент инерции I в 2 раза больше Опыт с двумя скатывающимися цилиндрами.

Момент инерции однородного шара относительно $I=\frac{2}{5}mR^2$ оси, проходящей через его центр:

Теорема Штейнера

Зная момент инерции тела относительно оси, проходящей через центр масс, момент инерции относительно произвольной оси вычисляют по теореме Штейнера:

момент инерции относительно произвольной оси I равен сумме момента инерции I_c относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями d.

$$I = I_c + md^2$$

Вспомним опыт с гантелями на скамье Жуковского

Демонстрации на момент инерции

- 1. Гироскопы не путать с гороскопами
- 2. Волчки
- 3. Прошу принести на следующую лекцию два куриных яйца. Одно сырое другое сваренное вкрутую. Лучше кто живет в общежитии.