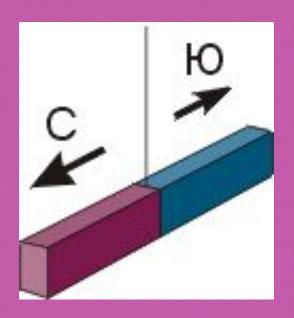
Магнитные явления



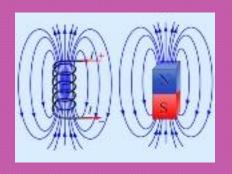
• Рассмотрим постоянный магнит

Физические термины:

- •Северный полюс
- •Южный полюс
- •Полосовой магнит
- •Подковообразный магнит
- •Кольцевой магнит
- •Одноименные полюсы
- •Разноименные полюсы

Свойства постоянных магнитов:

1. Опыт с тележками, стрелкой, компасом


Вопросы:

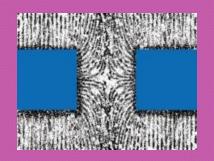
- Что происходит при сближении разноименных полюсов?
- А одноименных (одинаковых)?
- Обязательно ли подводить магниты вплотную?
- Куда нужно поднести магнит, чтобы он быстрее «почувствовал» другой магнит

С

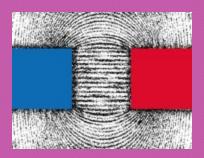
Вывод:

Вокруг постоянных магнитов существует особый вид материи – МАГНИТНОЕ ПОЛЕ и наиболее сильное МП на полюсах

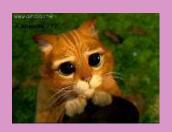
Свойства постоянных магнитов:


2. Опыт с металлическими опилками

Вопросы:

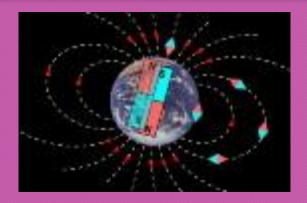

- Что происходит при приближении полосового магнита к стружкам?
- А подковообразного?

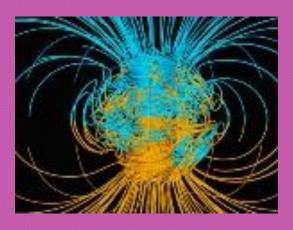
Стружки выстраиваются по невидимым линиям, которые называются МАГНИТНЫЕ ЛИНИИ и наиболее густо они расположены на полюсах, там где поле самое сильное


ОЙ! А что же у нас с отдыхом??

Стрелка развернулась синим полюсом на север, значит там на самом деле южный полюс и жара! Решено - еду загорать на север!

Ага, некоторым лохматым хорошо, можно и в сугробе загорать, но что-то мне не хочется зимой на север. Может нас компас обманывает или он просто сломался?

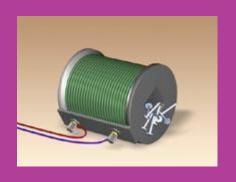


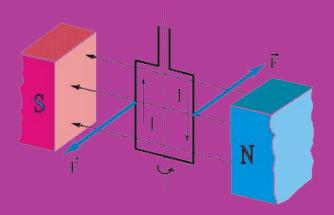

Как же так получилось?
ПОМОГИТЕ НАМ
РАЗОБРАТЬСЯ!
КУДА ПОКАЗЫВАЕТ СТРЕЛКА?

Магнитное поле Земли

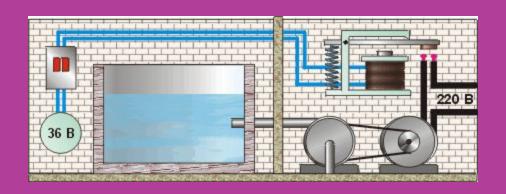
Северное сияние

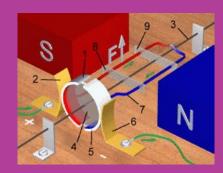
Можно ли получить магнитное поле без постоянного магнита?

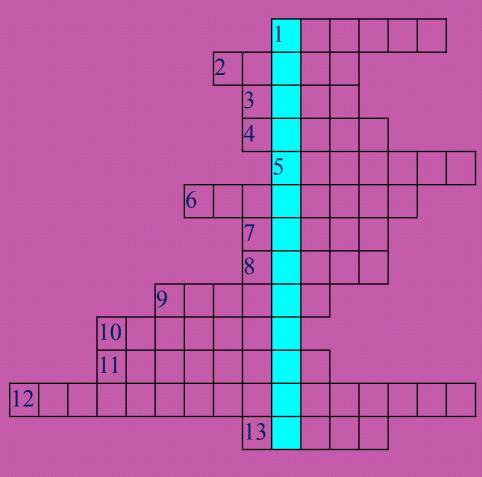

3. Опыт с проводником с током Вопросы:


- Что происходит при приближении магнитной стрелки к проводнику, по которому течет электрический ток?
- А при приближении постоянного магнита?

Вывод:


вокруг проводников с электрическим током тоже существует МАГНИТНОЕ ПОЛЕ





Применение магнитных полей

Угадай название:

- 1. Ученый, впервые обнаруживший взаимодействие электрического тока и магнитной стрелки.
- 2. Место магнита, где наблюдаются наиболее сильные магнитные действия.
- 3. Устройство, работающее на слабых токах, при помощи которого можно управлять электрической цепью с сильными токами.
- 4. Изобретатель первого в мире телеграфного аппарата, печатающего буквы.
- 5 и 6. Приборы, совместное пользование которыми позволяет передавать звук на далекие расстояния.
- 7. Изобретатель электромагнитного телеграфа и азбуки из точек и тире.
- 8. Ученый, объяснивший намагниченность молекул железа электрическим током.
- 9. Прибор, служащий для ориентации на местности, основной частью которого является магнитная стрелка.
- 10. Русский ученый, который изобрел первый электрический телеграф с магнитными стрелками.
- 11. Одна из основных частей приборов 5 и 6, названных выше.
- 12. Приемник тока, служащий для превращения электрической энергии в механическую.
- 13. Вещество, из которого делают постоянные магниты.

Проверим? C Л Ю Л И H Л И 0 M M M П И Ш И Л Л H Л la T И H a e К p И 0 Л Л Ь