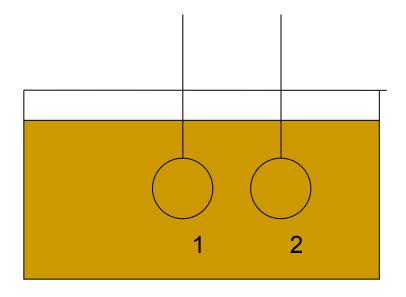
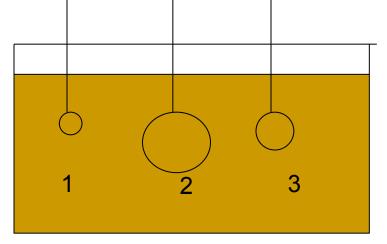

# Давление твердых тел, жидкостей и газов

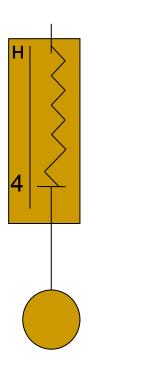
Урок физики в 7 классе разработан учителем высшей категории МОУ «Уйская СОШ» Татарниковой Л.П.

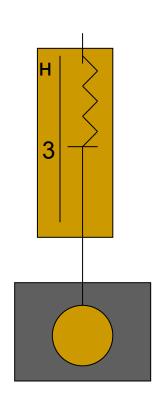






- 1. Одинаковая ли сила нужна для поднятия якоря в морской и речной воде?
- 2. В воду опустили 2 одинаковые бутылки: одну с водой, другую пустую. Равны ли по модулю архимедовы силы, действующие на них.

- Свинцовый шар и мыльный пузырь имеют равные объемы. Равны ли по модулю архимедовы силы, действующие на эти шары в воздухе.
- 2. Останется ли прежней архимедова сила, действующая на подводную лодку, если она из моря перейдет в устье реки.


3. Изменится ли выталкивающая сила, если брусок, находящийся в жидкости перевести из положения 1 в положение 2?




3. На какой из опущенных в воду стальных шаров, действует наибольшая выталкивающая сила?



4. По показаниям динамометра определите выталкивающую силу, действующую на тело, погружённое в жидкость.





В один из сосудов, в которые опущены одинаковые тела, налита вода, в другой – масло. По  $\Pi Q_{\mathbf{L}}$ ниям рметров ДИ рлите, в ка<mark>з</mark> ОГ CCZ вода.

## Подумайте!

- Можно ли опытным путем определить выталкивающую силу, действующую на тело, погруженное в жидкость?
- Как это сделать?

# Цели

- Повторить понятие силы Архимеда.
- Научиться в ходе лабораторной работы определять величину архимедовой силы;
- Продолжить формирование умения планировать и проводить эксперимент, делать выводы.

## План проведения эксперимента

- Цель проведения лабораторной работы.
- Приборы и материалы.
- 3. Теория.
- 4. Гипотеза.
- Условия проведения эксперимента.
- 6. Алгоритм проведения эксперимента.
- 7. Оформление результатов.
- 8. Вывод:
  - Цель проведения лабораторной работы;
  - Что делали для достижения цели;
  - Какие результаты получили;
  - Подтвердили или опровергли гипотезу;
  - Реален или нет результат (совпадает или нет с теорией)

#### Цель проведения лабораторной работы.

- Обнаружить на опыте выталкивающее действие жидкости на погруженное в неё тело и определить выталкивающую силу.
- Экспериментальным путём установить от каких величин и как зависит сила Архимеда.

Дополнительно:

Экспериментальным путём установить от каких величин не зависит сила Архимеда.

## Приборы и материалы.

- Динамометр;
- Штатив с муфтой и лапкой;
- Два тела разного объёма;
- Стаканы с водой и насыщенным раствором соли.
  - Для дополнительного задания
- 2 цилиндра: из стали и алюминия, одинакового объёма.
- Салфетка.



- Будьте внимательны, осторожны при выполнении опытов.
- Не держите на рабочем месте предметы, не требующиеся при выполнении задания.
- Не пользуйтесь поврежденной стеклянной посудой.
- Если разбили сосуд в процессе работы, то осколки со стола сметать только щеткой в совок.
- При опускании груза в жидкость не сбрасывайте его резко, т.
   к. при этом может разбиться сосуд и вы можете пораниться.
- Соблюдайте порядок на рабочем месте.

## Teopan.

- Какую силу называют силой Архимеда?
   Силу, выталкивающую тело из жидкости или газа называют архимедовой силой.
- Чему равна архимедова сила?
   Весу жидкости, взятого в объёме этого тела.
- По какой формуле вычисляется архимедова сила?
- От каких величин вависит прхимедова сила?
  От плотности жидкости, от объёма тела.
- От каких величин не зависит архимедова сила?
   От плотности вещества тела.
- Как опытным путём можно доказать, что на тело действует сила Архимеда?
- Определить вес тела в воздухе, вес тела в жидкости. Вес тела в жидкости меньше веса тела в воздухе. Следовательно, на тело действует сила, направленная против силы тяжести, т.е. выталкивающая.

# Гипотеза.

- Если тело погрузить в жидкость, то...
- 2. Если плотность жидкости увеличится, то...
- 3. Если в жидкость погрузить тело большего объёма, то...
  - Дополнительное задание:
  - Если в жидкость поочерёдно погружать тела равного объёма, изготовленные из разного вещества, то...

### Условия проведения эксперимента.

#### 1 опыт (в пресной воде)

- Приборы и материалы в процессе проведения опыта не меняются.
- Тела полностью погружаются в жидкость.

#### <u> 2 опыт (в насыщенном растворе соли)</u>

- Приборы и материалы в процессе проведения опыта не меняются.
- Тела полностью погружаются в жидкость.

#### 3 опыт (с телом большего объёма в пресной воде)

- Приборы и материалы в процессе проведения опыта не меняются.
- Тела полностью погружаются в жидкость.

#### Алгоритм проведения эксперимента.

#### 1 опыт

- Укрепить динамометр на штативе.
- 2. Подвесить к динамометру на нити тело.
- 3. Определить вес тела в воздухе.
- 4. Погрузить тело, подвешенное к динамометру, в пресную воду.
- 5. Определить вес тела в пресной воде.
- 6. Вычислить выталкивающую силу, действующую на тело.

#### ■ 2 опыт

- 1. Погрузить тело, подвешенное к динамометру, в насыщенный раствор соли.
- 2. Определить вес тела в насыщенном растворе соли.
- 3. Вычислить выталкивающую силу, действующую на тело.

#### 3 опыт

- 1. Подвесить к динамометру на нити тело большего объёма.
- 2. Определить вес этого тела в воздухе.
- 3. Погрузить тело, подвешенное к динамометру, в пресную воду.
- 4. Определить вес тела в пресной воде.
- Вычислить выталкивающую силу, действующую на тело большего объёма.

#### Алгоритм проведения дополнительного задания.

- 1. Подвесить к динамометру на нити алюминиевый цилиндр.
- 2. Определить вес алюминиевого цилиндра в воздухе.
- 3. Погрузить цилиндр, подвешенный к динамометру, в пресную воду.
- 4. Определить вес алюминиевого цилиндра в пресной воде.
- 5. Вычислить выталкивающую силу, действующую на алюминиевый цилиндр.
- 6. Подвесить к динамометру на нити стальной цилиндр.
- 7. Определить вес стального цилиндра в воздухе.
- 8. Погрузить цилиндр, подвешенный к динамометру, в пресную воду.
- 9. Определить вес стального цилиндра в пресной воде.
- о. Вычислить выталкивающую силу, действующую на стальной цилиндр .
- 1. Зависит ли выталкивающая сила от материала из которого сделаны цилиндры? Сделать соответствующий вывод.



## Оформление результатов.

| Жидкость                                    | Вес тела в воздухе, $P,H$ |           | Вес тела в жидкости $P_1, H$ |            | Выталкивающая сила, $F,H$ $F = P - P_1$ |           |
|---------------------------------------------|---------------------------|-----------|------------------------------|------------|-----------------------------------------|-----------|
|                                             | $P_{V_{-1}}$              | $P_{V_2}$ | $P_{1V_1}$                   | $P_{1V_2}$ | $F_{V_1}$                               | $F_{V_2}$ |
| Пресная<br>вода                             |                           |           |                              |            |                                         |           |
| Насыщен<br>ный<br>раствор<br>соли в<br>воде |                           |           |                              |            |                                         |           |

## Вывод:

- Цель проведения лабораторной работы.
- Что делали для достижения цели.
- Какие результаты получили.
- Подтвердили или опровергли гипотезу.
- Реален или нет результат (совпадает или нет с теорией).

# Домашнее задание

- Повторить § 49.
- Выполнить задание №14 на стр. 120 учебника.