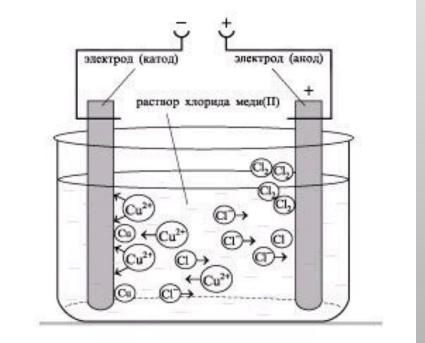
Анод + Катод = Электролиз


Выполнил: ученик 11М класса МОУ лицея №6 Аббязов Эрик

Руководитель: Учитель химии МОУ лицея №6 Дробот С.С.

Цель работы:

Изучить сущность применение.

процесса электролиза и выяснить области его

Содержание

- 1. Электролиз расплава
- 2. Электролиз раствора
- 3. Схема электролиза
- 4. Сущность электролиза
- 5. Применение электролиза
- 6. <u>Выводы</u>
- 7. Источники информации

Электролиз расплава

Если расплавить поваренную соль, то произойдет расщепление кристаллической решетки на ионы. При этом образуются катионы натрия и анионы хлора:

Опустим в расплав электроды постоянного электрического тока.

Направляясь к катоду, катион натрия получает с него один электрон, т.е. происходит восстановление:

$$Na^{+} + \bar{e} -> Na^{0}$$

Катод, на котором имеется постоянный избыток электронов, является восстановителем.

К аноду направляется анион хлора. Поскольку на аноде постоянный недостаток электронов, ион хлора отдает электрон, превращаясь в нейтральный атом, т.е. окисляется:

Анод, на котором постоянный недостаток электронов, является окислителем.

ЭЛЕКТРОЛИЗ – окислительно-восстановительный процесс, протекающий под действием электрического тока.

Электролиз- окислительно-восстановительный процесс, который возникает на электродах при прохождении электрического тока через раствор или расплав электролита.

На катоде(-) -восстановление

На аноде(+) -окисление

Примеры электролиза расплавов:

а)
$$2KCl$$
 (расплав) $\rightarrow 2K^{+} + 2Cl^{-} \longrightarrow 2K + Cl_{2}^{\uparrow}$ (катод) $K^{+} + 1e^{-} = K^{0}$ | 2 (анод) $2Cl^{-} - 2e^{-} = Cl_{2}^{0}$ | 1 электролиз
б) $4NaOH$ (расплав) $\rightarrow 4Na^{+} + 4OH^{-} \longrightarrow 4Na + O_{2}^{\uparrow} + 2H_{2}O$ (катод) $Na^{+} + 1e^{-} = Na^{0}$ | 4 (анод) $2O^{-II} - 4e^{-} = O_{2}^{0}$ | 1

Для солей неактивных металлов и бескислородных кислот(CuCl2) электролиз раствора и расплава соли одинаков.

Li⁺, K⁺, Ca²⁺, Na⁺, Mg²⁺, Al³⁺, Zn²⁺, Cr³⁺, Fe²⁺, Ni²⁺, Sn²⁺, Pb²⁺, H⁺, Cu²⁺, Hg²⁺, Ag⁺, Pt⁴⁺, Au³⁺.

Увеличение окислительной активности ионов

F-, NO₃-, SO₄-, OH-, CI-, Br-, I-, S²-

Электролиз раствора

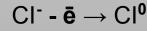
В водных растворах процесс приобретает ряд особенностей, так как в нем принимает участие вода.

В растворе, помимо диссоциации соли, происходит весьма слабая диссоциация воды.

$$NaCI -> Na^{+} + CI^{-}$$

 $H_{2}O -> H^{+} + OH^{-}$

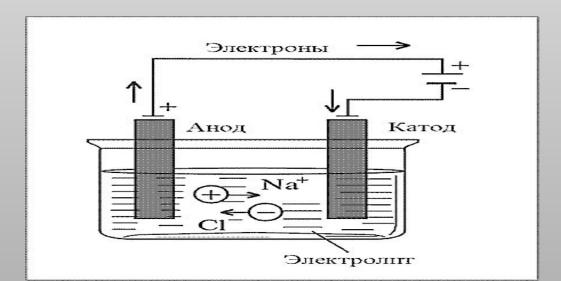
Таким образом, в растворе образуется два вида катионов (Na⁺ и H⁺) и два вида анионов (CI⁻ и OH⁻).


В ряду напряжений металлов натрий стоит намного левее водорода. Следовательно, восстановительные свойства атома натрия сильнее, чем атома водорода. Зато окислительные свойства иона Na⁺ выражены слабее, чем иона H⁺, следовательно, на катоде будет восстанавливаться не металлический натрий, а водород:

$$2H_2O + 2\bar{e} -> H_2 + 2OH^-$$

Ионы натрия будут находиться в растворе до тех пор, пока полностью не разрядятся ионы водорода.

К аноду направятся анионы CI⁻ и OH⁻, восстановительные свойства которых также неодинаковы (см. ряд анионов, расположенных в порядке увеличения способности к окислению). Анионы CI⁻ окисляются легче, чем OH⁻, поэтому на аноде будет происходить процесс:


Электролиз раствора

К аноду направятся анионы CI⁻ и OH⁻, восстановительные свойства которых также неодинаковы (см. <u>ряд анионов</u>, расположенных в порядке увеличения способности к окислению). Анионы CI⁻ окисляются легче, чем OH⁻, поэтому на аноде будет происходить процесс:

$$Cl^{-} - \bar{e} \rightarrow Cl^{0}, 2Cl^{0} \rightarrow Cl_{2}$$

В большинстве случаев анионы, состоящие из атомов одного элемента, такие, как CI⁻, Br⁻, I⁻, S²⁻, окисляются на аноде быстрее, чем гидроксид-ион.

При электролизе раствора поваренной соли на электродах получаются водород и хлор, а в растворе остаются ионы Na⁺ и OH⁻. Эти ионы представляют собой в диссоциированном виде едкий натр NaOH.Таким способом в промышленности получают едкие щелочи.

Электролиз воды проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита - воды):

электролиз
$$2H_2O \longrightarrow 2H_2\uparrow + O_2\uparrow$$
 (катод) $2H^I + 2e^- = H_2^{\ 0} \ | \ 2$ (анод) $2O^{-II} - 4e^- = O_2^{\ 0} \ | \ 1$

В зависимости от инертного электролита электролиз проводится в нейтральной, кислотной или щелочной среде. При выборе инертного электролита необходимо учесть, что никогда не восстанавливаются на катоде в водном растворе катионы металлов, являющихся типичными восстановителями (например Li⁺, Cs⁺, K⁺, Ca²⁺, Na+, Mg²⁺, Al³⁺) и никогда не окисляется на аноде кислород O–II анионов оксокислот с элементом в высшей степени окисления (например ClO⁴⁻, SO₄²⁻, NO₃⁻, PO₄³⁻, CO₃²⁻, SiO₄⁴⁻, MnO₄⁻), вместо них окисляется вода

Примеры электролиза растворов солей:

на аноде окисляются анионы CI, а не кислород О молекул воды, так как электроотрицательность хлора меньше, чем кислорода, и следовательно, хлор отдает электроны легче, чем кислород

на катоде восстанавливаются катионы Cu, а не водород H молекул воды, так как медь стоит правее водорода в ряду напряжений, то есть легче принимает электроны, чем H в воде

Сущность электролиза

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод, а к положительному полюсу - анод, после чего погружают их в электролизер с раствором или расплавом электролита

В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т.п., так называемые вторичные процессы

Сущность электролиза

Восстановительный процесс на катоде в водных растворах:

- 1) Катионы металлов со стандартным электродным потенциалом, больше, чем у водорода, расположены в ряду стандартных электродных потенциалов после него: Cu^{2+} ; Zn^{2+} ; Cr^{3+} ; Fe^{2+} ;...; до Pt^{4+} . При электролизе они почти полностью восстанавливаются на катоде и выделяются в виде металла.
- 2) Катионы металлов с малой величиной стандартного электродного потенциала (металлы начала ряда Li⁺;Na⁺;K⁺;Rb⁺;...; до Al³⁺ включительно). При электролизе на катоде они не восстанавливаются, вместо них восстанавливаются молекулы воды.
- 3) Катионы металлов со стандартным электродным потенциалом меньшим, чем у водорода, но большим, чем у алюминия (Mn²⁺;Zn²⁺;Cr³⁺;Fe²⁺;...; до H). При электролизе эти катионы, характеризующиеся средними значениями электроноакцепторной способности, на катоде восстанавливаются одновременно с молекулами воды.
- 4) При электролизе кислородосодержащих кислот и их солей (SO_4^{2-} ; NO_3^{-} ; PO_4^{3-} и т.п.) с максимальной степенью окисления неметалла на аноде окисляются не анионы, а молекулы воды с выделением кислорода.

Электрическая энергия

Химическая энергия

Расплав

Электролиз

Раствор

NaCl

Катод(-) <- Na⁺ + Cl⁻ -> Анод(+)

NaCl

Катод(-) <- Na⁺ + Cl⁻ -> Анод(+)

H20

$$Na^{+} + e => Na^{0}$$

$$2Cl^{-} => Cl_{2}^{0} + 2e$$

2Na⁺

 $H_2^0 + 2e \Rightarrow H_2^+ + 2OH^-$

2CI- => CI20 + 2e

Восстановление

Окисление

Восстановление

Окисление

Основные положения электродных процессов

1. На катоде:

Не восстанавливаются, выделяется Н

Возможно выделение Ме и H_{3}

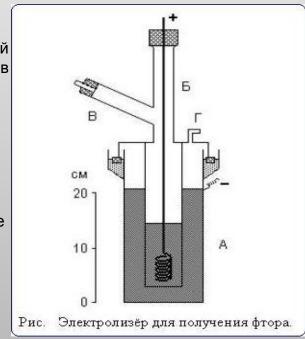
Восстанавливаются, выделяется

Me

- 2. Анодные процессы
- а) Растворимый анод (Cu, Ag, Ni, Cd) подвергается окислению **Me =>Meⁿ⁺ +ne**
- б) На нерастворимом аноде (графит, платина) обычно окисляются анионы S2-, J-, Br-, Cl-, OH- и молекулы Н₂0:

$$2J^{-} => J_{2}^{0} + 2e$$
; $4OH^{-} => O_{2} + 2H_{2}O + 4e$; $2H_{2}O => O_{2} + 4H^{+} + 4e$

Применение электролиза


Преимущества электролиза перед химическим методами получения целевых продуктов заключаются в возможности сравнительно просто (регулируя ток) управлять скоростью и селективной направленностью реакций. Условия электролиза легко контролировать, благодаря чему можно осуществлять процессы как в самых "мягких", так и в наиболее "жёстких" условиях окисления или восстановления, получать сильнейшие окислители и восстановители, используемые в науке и технике.

Электролиз - основной метод промышленного производства алюминия, хлора и едкого натра, важнейший способ получения фтора, щелочных и щелочноземельных металлов, эффективный метод рафинирования металлов.

Путём электролиза воды производят водород и кислород. Электрохимический метод используется для синтеза органических соединений различных классов и многих окислителей (персульфатов, перманганатов, перхлоратов, перфторорганических соединений и др.).

Применение электролиза для обработки поверхностей включает как катодные процессы гальванотехники (в машиностроении, приборостроении, авиационной, электротехнической, электронной промышленности), так и анодные процессы полировки, травления, размерной анодно-механической обработки, оксидирования (анодирования) металлических изделий (см. также Электрофизические и электрохимические методы обработки).

Путём электролиза в контролируемых условиях осуществляют защиту от коррозии металлических сооружений и конструкций (анодная и катодная защита).

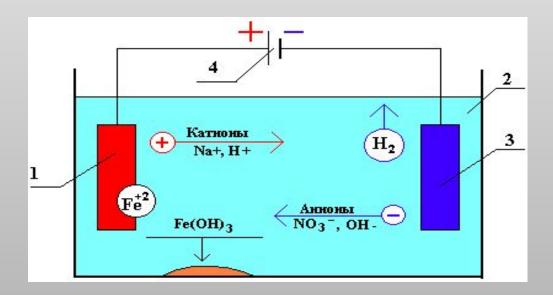
Электрохимическое процессы широко применяют в различных областях современной техники, в аналитической химии, биохимии и т.д.

В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т.д. При этом одни вещества получают восстановлением на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.)

Гальваномехника - область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника подразделяется на гальваностегию и гальванопластику.

Гальваностегия- электроосаждение на поверхность металла другого металла, который прочно связывается(сцепляется) с покрываемым металлом(предметом), служащим катодом электролизера.

Гальванопластика- получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами. Гальванопластику используют для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование «накладного слоя никеля, серебра, золота и т.д.).



Выводы

Катод – электрод, на котором происходит процесс восстановления.

Ано∂ – электрод, на котором происходит процесс окисления.

Электролиз — окислительно-восстановительный процесс, обусловленный подводом электрической энергии извне.

Источники информации:

- http://www.alhimik.ru/
- •Л.В. Вятченникова. Электролиз.//Химия. Приложение к газете «Первое сентября», №24, 1998
- •А.Ф. Аспицкая. К изучению электролиза в курсе химии, Химия в школе, «Педагогика»,1991
- •Г.М. Чернобельская, И.Н. Чертков Химия, «Учебная литература для медицинских училищ». М.: Медицина, 1986г.
- http://scientificpage.net/elektroliz/
- http://www.chemport.ru/electrolysis.shtml
- http://scientificpage.net/elektroliz/index2.html