Окислительно-восстановительные реакции. 11 класс

Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются *окислительно-восстановительными*

Окисление - процесс *отдачи* электронов атомом, молекулой или ионом.

Атом превращается в положительно заряженный ион:
 7n⁰ – 2e → 7n²⁺

■ отрицательно заряженный ион становится нейтральным атомом: $2CI^{-}$ -2e $\rightarrow CI_{2}^{0}$

$$S^{2-} - 2e \rightarrow S^0$$

• Величина положительно заряженного иона (атома) увеличивается соответственно числу отданных электронов: Fe^{2+} -1e \rightarrow Fe³⁺

$$Mn^{+2}$$
 -2e $\rightarrow Mn^{+4}$

Восстановление - процесс *присоединения* электронов атомом, молекулой или ионом.

- Атом превращается в отрицательно заряженный ион $S^0 + 2e \rightarrow S^{2^-}$ $Br^0 + e \rightarrow Br^-$
- Величина положительно заряженного иона (атома) уменьшается соответственно числу присоединенных электронов: $Mn^{+7} + 5e \rightarrow Mn^{+2}$

$$S^{+6} + 2e \rightarrow S^{+4}$$

- или он может перейти в нейтральный атом:

$$H^+ + e \rightarrow H^0$$

 $Cu^{2+} + 2e \rightarrow Cu^0$

Восстановители - атомы, молекулы или ионы, *отдающие* электроны. Они в процессе OBP **окисляются**

Типичные восстановители:

- атомы металлов с большими атомными радиусами (I-A, II-A группы), а так же Fe, Al, Zn
- простые вещества-неметаллы: водород, углерод, бор;
- отрицательно заряженные ионы: Cl⁻, Br⁻, l⁻, S²⁻, N⁻³. Не являются восстановителем фторид- ионы F⁻.
- ионы металлов в низшей с.о.: Fe²⁺,Cu⁺,Mn²⁺,Cr³⁺;
- сложные ионы и молекулы, содержащие атомы с промежуточной с.о.: SO_3^{2-} , NO_2^{--} ; CO, MnO_2 и др.


Окислители - атомы, молекулы или ионы, присоединяющие электроны. Они в процессе OBP восстанавливаются

Типичные окислители:

- атомы неметаллов VII-A, VI-A, V-A группы в составе простых веществ
 - ионы металлов в высшей с.о.: Cu²⁺, Fe³⁺,Ag^{+ ...}
- сложные ионы и молекулы, содержащие атомы с высшей и высокой с.о.: SO_4^{2-} , NO_3^{-} , MnO_4^{-} , ClO_3^{-} , $Cr_2O_7^{2-}$, SO_3 , MnO_2 и др.

 На проявление окислительновосстановительных свойств влияет такой фактор, как устойчивость молекулы или иона. Чем прочнее частица, тем в меньшей степени она проявляет окислительно-восстановительные свойства

 Например, азот имеет высокую электроотрицательность и мог бы быть сильным окислителем в виде простого вещества, но в его молекуле тройная связь, молекула очень устойчивая, азот химически пассивен.

• Или HCLO более сильный окислитель в растворе, чем $HCLO_4$, так как HCLO — менее устойчивая кислота.

 Если химический элемент находится в промежуточной степени окисления, то он проявляет свойства и окислителя, и восстановителя.

Степени окисления серы: -2,0,+4,+6

- H_2S^{-2} восстановитель
- $-2H_2S+3O_2=2H_2O+2SO_2$
- $S^0, S^{+4}O_2$ окислитель и восстановитель
- $S+O_2=SO_2$ (восстановитель) $2SO_2+O_2=2SO_3$
- $S+2Na=Na_2S$ $SO_2+2H_2S=3S+2H_2O$ (окислитель)
- $H_2S^{+6}O_4$ окислитель
- Cu + 2H₂SO₄ = CuSO₄ + SO₂ + 2H₂O

Определение степеней окисления атомов химических элементов

- С.о. атомов х/э в составе простого вущества = 0
- Алгебраическая сумма с.о. всех элементов в составе иона равна заряду иона
- Алгебраическая сумма с.о. всех элементов в составе сложного вещества равна 0.

$$K^{+1} Mn^{+7} O_4^{-2}$$

$$1+x+4(-2)=0$$

Классификация окислительно-восстановительных реакций

- Реакции межмолекулярного окисления $2AI^0 + 3CI_2^0 \rightarrow 2AI^{+3} CI_3^{-1}$
- Реакции внутримолекулярного окисления $2KCl^{+5}O_3^{-2} \rightarrow 2KCl^{-1} + 3O_2^{-0}$
- Реакции диспропорционирования, дисмутации (самоокисления-самовосстановления):

$${}^{3}\text{Cl}_{2}{}^{0} + 6\text{KOH}_{\text{(rop.)}} \longrightarrow {}^{\text{KCl}^{+5}\text{O}}_{3} + 5\text{KCl}^{-1} + 3\text{H}_{2}\text{O}$$

 ${}^{2}\text{N}^{+4}\text{O}_{2} + {}^{\text{H}_{2}\text{O}} \longrightarrow {}^{\text{HN}^{+3}\text{O}}_{2} + {}^{\text{HN}^{+5}\text{O}}_{3}$

Это полезно знать

- Степени окисления элементов в составе аниона соли такие же, как и в кислоте, например: $(NH_4)_2Cr_2^{+6}O_7$ и $H_2Cr_2^{+6}O_7$
- Степень окисления кислорода в пероксидах равна -1
- Степень окисления серы в некоторых сульфидах равна -1, например: FeS_2
- Фтор- единственный неметалл, не имеющий в соединениях положительной степени окисления
- В соединениях NH₃, CH₄ и др. знак электроположительного элемента водорода на втором месте

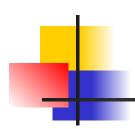
Окислительные свойства концентрированной серной кислоты

Продукты восстановления серы:

- $H_2SO_4 + ou.akt.$ металл (Mg, Li, Na...) $\rightarrow H_2S$
- H_2SO_4 + акт. металл (Mn, Fe, Zn...) \rightarrow S
- H_2SO_4 + неакт. металл (Cu, Ag, Sb...) $\rightarrow SO_2$
- $H_2SO_4 + HBr \rightarrow SO_2$
- H_2SO_4 + неметаллы (C, P, S...) → SO_2 Примечание: часто возможно образование смеси этих продуктов в различных пропорциях

Продукты восстановления перманганат – иона в различных средах

Среда	Продукт	Признак реакции
кислая	Mn ²⁺ (соль)	бесцветный раствор
щелочная	MnO ₄ ²⁻ (манганат-ион)	фиолетовый раствор
нейтральная	MnO ₂	бурый осадок


Пероксид водорода в окислительно-восстановительных реакциях

Среда	Окисление	Восстановление
раствора	(H ₂ O ₂ -восстановитель)	(H ₂ O ₂ -окислитель)
кислая	H_2O_2 -2e $\to O_2$ + 2H ⁺	$H_2O_2 + 2H^+ + 2e \rightarrow 2H_2O$
	$(O_2^{-2} - 2e \rightarrow O_2^{0})$	$(O_2^{-2} + 2e \rightarrow 20^{-2})$
щелочная	$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O$	$H_2O_2+2e \rightarrow 2OH^-$
	$(O_2^{-2} - 2e \rightarrow O_2^{0})$	$(O_2^{-2} + 2e \rightarrow 2O^{-2})$
нейтральная	$H_2O_2 - 2e \rightarrow O_2 + 2H^+$	$H_2O_2 + 2e \rightarrow 2OH^-$
	$(O_2^{-2} - 2e \rightarrow O_2^{0})$	$(O_2^{-2} + 2e \rightarrow 20^{-2})$

Азотная кислота в окислительно-восстановительных реакциях

Продукты восстановления азота:

- Концентрированная HNO_3 : $N^{+5} + 1e \rightarrow N^{+4}$ (NO_2) (Ni, Cu, Ag, Hg; C, S, P, As, Se); пассивирует Fe, Al, Cr
- Разбавленная HNO_3 : N^{+5} +3e $\rightarrow N^{+2}$ (NO) (Металлы в ЭХРНМ AI ...Cu; неметаллы S, P, As, Se)
- Разбавленная HNO_3 : N^{+5} +4e $\rightarrow N^{+1}$ (N_2O) Ca, Mg, Zn
- Разбавленная HNO_3 : N^{+5} +5e \rightarrow N^0 (N_2)
- Очень разбавленная: $N^{+5} + 8e \rightarrow N^{-3} (NH_4NO_3)$ (активные металлы в ЭХРНМ до AI)

Значение ОВР

ОВР чрезвычайно распространены. С ними связаны процессы обмена веществ в живых организмах, дыхание, гниение, брожение, фотосинтез. ОВР обеспечивают круговорот веществ в природе. Их можно наблюдать при сгорании топлива, коррозии и выплавке металлов. С их помощью получают щелочи, кислоты и другие ценные ОВР лежат химические вещества. основе преобразования энергии взаимодействующих химических веществ в эклектическую энергию аккумуляторах гальванических элементах.