

«Можно не любить химию, но прожить без неё сегодня и завтра нельзя» О.М. Нефёдов

Тема урока: Аммиак

Встречаемся с аммиаком

Краска для волос

Медицина

Моющие средства

производство HNO₃

Производство удобрений

Сегодня аммиак — исключительной адогент в холодильниках важности сырье для производства азотсодержащих веществ, применяемых в сельском хозяйстве, химии, медицине, военном деле. И что не менее важно, он является одним из продуктов белкового обмена в организме.

История открытия

<u>аммиака</u>

Посредине ливийской пустыни стоял храм, посвященный богу Амон Ра. В древности арабские алхимики получали из оазиса Амон, находившегося около храма, бесцветные кристаллы. растирали в ступках, нагревали – и получали едкий газ. Сначала его именовали аммониак, а потом сократили название до «аммиак».

В 18 веке аммиак был получен английским химиком Джозефом Пристли.

Сегодня аммиак — исключительной важности сырье для производства азотсодержащих веществ, применяемых в сельском хозяйстве, химии, медицине, военном деле. И что не менее важно, он является одним из продуктов белкового обмена в организме.

Получение аммиака (УН3)

 $NH_4Cl+ Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$

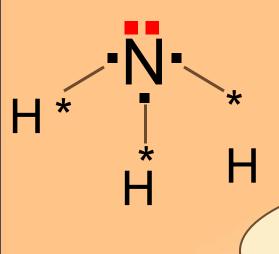
 $N_2 + 3H_2 \rightleftharpoons 2NH_3 + Q$

Физические свойства аммиака

 MH_{3}

NH₃ аммиак - газ: без цвета, с характерным запахом, легче воздуха (собирают в перевёрнутый вверх дном сосуд)

NH₃ - ЯДОВИТ!



Нашатырный спирт — 3-10 % раствор аммиака Аммиачная вода - 18 -25 % раствор аммиака

Жидкий аммиак вызывает сильные ожоги кожи; обычно его перевозят в стальных баллонах (окрашены в желтый цвет, имеют надпись "Аммиак" черного цвета)

Строение молекулы аммиака

Атом азота за счет своих трех неспаренных электронов образует с атомами водорода 3 ковалентные полярные связи => валентность N равна III

Неподеленная электронная пара атома азота способна участвовать в образовании четвертой ковалентной связи с атомами, имеющими вакантную (свободную) орбиталь по донорно-акцепторному механизму. Валентность N равна IV

Аммиак

Механизм донорно-акцепторной связи:

$$H_3N: + H^+ = [NH_4]^+$$

Химические свойства аммиака

Реакции, идущие с

изменением степени окисления азота NH_3 – сильный восстановитель

без изменения степени окисления азота NH₃ – слабое основание

•<u>аммиак реагирует с водой:</u>

 $NH_3 + H_2O \Leftrightarrow NH_4OH \Leftrightarrow NH_4^+ + OH^-$ гидроксид аммония

1. аммиак – непрочное соединение, при нагревании разлагается: 2NH₃ ⇔ N₂ + 3H₂

2. аммиак горит в кислороде: $NH_3 + O_2 \rightarrow N_2 + H_2O$

3. окисление аммиака кислородом воздуха в присутствии катализатора:

 $NH_3 + O_2 \xrightarrow{Pt, Rh} NO + H_2O$

•аммиак реагирует с кислотами: NH₃ + HCl → NH₄Cl

хлорид аммония

Добрый старый аммиак, Он богач, и он бедняк, Богат неподеленными своими электронами, Но только, вот беда, ему В растворе скучно одному. Он погулять готов всегда: Там кислота, а тут вода... Потом, обобранный до нитки, Он плачет: «Где мои пожитки? Какое это беззаконие: Стал катионом я аммония!»

