Николаева Наталия Николаевна

учитель химии МОУ «ООШ № 1 имени Бабкина Г.О.» представляет

открытый урок по химии с использованием ИКТ.

175-летию со дня рождения великого русского ученого естествоиспытателя Д.И. Менделеева посвящается

Углерод. Подгруппа углерода.

Из меня состоит все живое: Я – графит, антрацит и алмаз, Я на улице, в школе и в поле, Я в деревьях и в каждом из вас.

Работа с учебником стр**. 131** рис**.42**

ЦЕЛЬ УРОКА:

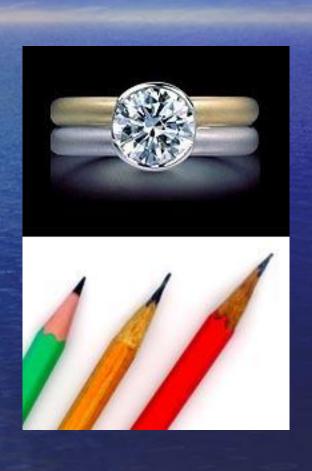
- Повторить общую характеристику элементов, исходя из положения в периодической системе и строения атома.
- Повторить строение атома и явление аллотропии на примере углерода.
- Рассмотреть строение, сравнение свойств и применение алмаза и графита.
- Дать понятие об аморфном углероде и его сортах.
- Познакомить учащихся с явлением адсорбции и его практическим значением.
 - Задание по учебнику: § 28. упр. 1, 3 (устно), упр. 6, 7, 8 (письменно)

Характеристика элементов главной подгруппы IV группы периодической системы

Символ элемента	Состав ядра атома	Размещение электронов по энергетическим уровням	Электрон ная формула	Характерные степени окисления	Формула и характер		Формула водородного соединения
					высшего оксида	высшего гидроксида	сосоинения
	e = p = n =						
	e = p = n =						

На основе строения атома углерода можно легко спрогнозировать окислительно-восстановительные свойства углерода:

Атом углерода


+ 4 е (окислитель, восстанавливается)

 $AI + C = H_2 + C =$

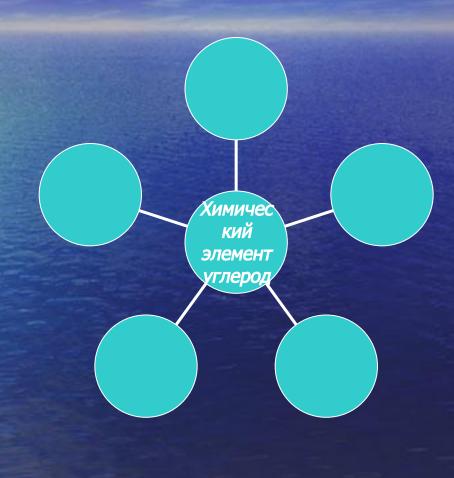
- 4 е(восстановитель, окисляется)C + O₂ =

 $C + F_2 =$

<u>Алмаз и графит</u> – это два аллотропных видоизменения углерода.

ОПРОС:

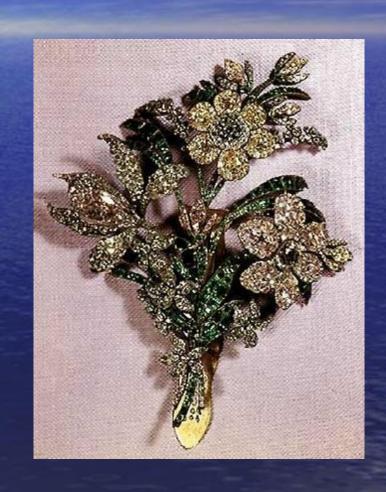
- Какое явление называют аллотропией?
- Что называют аллотропными видоизменениями элемента?
- Какие химические элементы образуют аллотропные видоизменения?
- Назовите причину аллотропии?
- Что такое кристаллическая решетка?


Таблица «Аллотропные видоизменения углерода»

ПРИЗНАКИ СРАВНЕНИЯ	АЛМАЗ	ГРАФИТ					
СХОДСТВО							
КАЧЕСТВЕННЫЙ СОСТАВ							
ТИП ВЕЩЕСТВА	2000年2月1日						
ФИЗИЧЕСКИЕ СВОЙСТВА (АГРЕГАТНОЕ СОСТОЯНИЕ)							
	РАЗЛИЧИЯ						
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА							
ФИЗИЧЕСКИЕ СВОЙСТВА (ЦВЕТ, АГРЕГАТНОЕ СОСТОЯНИЕ, ПРОВОДИМОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА)							
ПРИМЕНЕНИЕ							

Расположение орбиталей углерода в пространстве

Схема «Аллотропные видоизменения углерода»


АЛМАЗНЫЙ ФОНД Российской Федерации, государственное собрание драгоценных камней и ювелирных изделий, имеющих историческую, художественную и материальную ценность, а также уникальных золотых и платиновых самородков.

Искусственно ограненные алмазы называются бриллиантами и являются предметом роскоши.

Держава и **Большой бриллиантовый букет**

Алмаз «Шах».

В 1829 году поднесен персидским шахом Хозрев-Мирзой Николаю I как

выкуп за убийство русского дипломата и писателя А.С.Грибоедова.

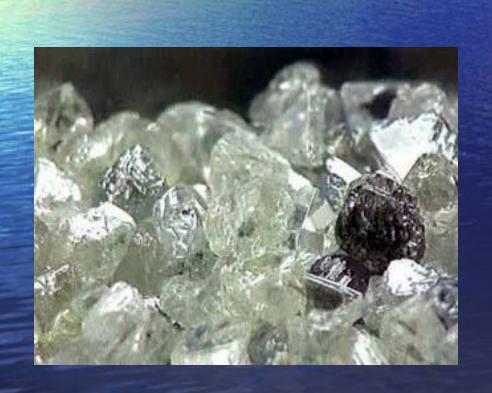
Колумбийский изумруд и Цейлонский сапфир

Портретный алмаз

АЛМАЗ - минерал по блеску, красоте и твердости превосходящий все минералы

- Бесцветные или окрашенные октаэдрические кристаллы.
- Самый твердый минерал (твердость 10 по минералогической шкале); плотность около 3,5 г/куб.см, высокий показатель преломления (2,417).
- Полупроводник.
- Крупные прозрачные кристаллы алмаза драгоценные камни первого класса.
- Крупнейшие в мире алмазы: «Куллинан» (3106 кар),
 «Эксельсиор» (971,5 кар), «Йонкер» (726 кар).

А что такое «карат»?


 Карат – это единица измерения драгоценных камней.

• В Аравийской пустыне растет дерево Caratina silikva (каратина силиква), косточка плодов которого весит всегда, - в любое время года и на любом дереве 0.2 г.

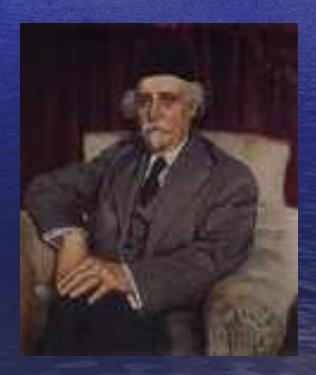
Промышленные месторождения связаны с кимберлитами, россыпями.

Главные зарубежные добывающие страны: ЮАР, Конго (Заир), Ботсвана, Намибия.

В Российской Федерации месторождения в Якутии, на Урале.

«Аморфный углерод», как было установлено исследованиями, не является еще одним аллотропным видоизменением углерода, а представляет собой мелкокристаллический графит. Сортами этого углерода являются древесный уголь, кокс и сажа.

- <u>Сажу</u> получают преимущественно при разложении метана. Она используется для приготовления типографской краски, картриджей, резины, косметической туши.
- Кокс представляет собой в основном свободный углерод, он получается при пыгревании каменного угля без доступа воздуха.
 Кокс применяется в доменных печах при выплавки чугуна из руд.
- <u>Древесный уголь</u> нолучается при нагревании без доступа воздуха древесины.
 - Оп применяется в качестве топлива в кузнечных горнах, жаровнях, самоварах, используется в металлургии при выплавке некоторых цветных металлов и особо чистых сортов чугуна, так как не содержит вредных примесей, имеющихся в коксе.


Явление адсорбции было открыто русским химиком ЛОВИЦЕМ

Н.Д.Зелинский на основе адсорбционных свойств древесного угля разработал фильтрующий противогаз.

Николай Дмитриевич Зелинский (1861-1953) - профессор Московского Университета, академик, Герой Социалистического Труда

Обобщение пройденного материала:

- Какие элементы Периодической системы входят в главную подгруппу IV группы?
- Что общего в строение атомов элементов IV группы главной подгруппы
 Периодической системы Д.И. Менделеева?
- Какой из элементов данной подгруппы встречается в свободном виде?
- Перечислите все аллотропные видоизменения химического элемента углерод.
- Назовите фамилию ученного открывшего явление адсорбции?
- Кто впервые разработал фильтрующий противогаз?

Закрепление. Тестовая работа по вариантам.

- 1. В IV группе главной подгруппы в периодической системе Д.И.Менделеева расположены следующие элементы:
- Б) Бериллий, магний, кальций, стронций, барий;
- В) Бор, алюминий, галлий, индий, таллий;
- А) Литий, натрий, калий, рубидий, цезий, франций;
- Г) углерод, кремний, германий, олово, свинец.
- 2. У элементов IV группы главной подгруппы на внешнем энергетическом уровне расположено ... электронов:
- A) 1;
- Б) 2;
- B) 3;
- Γ) 4;
- 3. Высший оксид характерный для элементов IV группе главной подгруппы в периодической системе Д.И.Менделеева имеет общую формулу:
- A) RO;
- Б) R2O3;
- B) RO2;
- **Γ**) R2O5.
- 4. Атом элемента имеет сокращенную электронную конфигурацию ...ns2np2 (где n номер периода). Формула водородного соединения этого элемента:
- A) RH4;
- Б) RH3;
- B) H2R;
- Γ) HR.
- 5. Общими формулами высшего оксида и гидроксида элемента, электронная конфигурация внешнего энергетического слоя которого...2 s22p2. являются:
- A) RO2, R(OH)2;
- Б) RO2, H2RO3;
- B) RO3, H2RO4;
- Γ) RO, R(OH)2.

6. Из аллотропных видоизменений углерода (sp3 гибридизация) наибольшую твердость проявляет:

- A) Уголь;
- Б) Графит;
- В) Алмаз;
- Г) Карбин.
- 7. Мягкий, sp2 гибридизация, слоистая структура, большие расстояния и непрочные связи между слоями. Отметьте аллотропную модификацию углерода, соответствующую приведенным свойствам:
- А) Уголь;
- Б) Алмаз;
- В) Графит;
- Г) Карбин.

8. Адсорбция представляет собой:

- А) Процесс разложения вещества;
- Б) Процесс выделения адсорбируемых веществ;
- В) Химическое взаимодействие угля с газами;
- Г) Поглощение газов или растворенных веществ поверхностью твердого вещества.

9. Сортами аморфного углерода являются:

- А) Алмазы и бриллианты;
- Б) Каменный, бурый уголь;
- В) Древесный уголь, кокс и сажа.
- Г) Не знаю.

10. Назовите фамилию ученного - химика, который впервые разработал противогаз:

- А) Д.И. Менделеев;
- Б) Н.Д. Зелинский;
- В) Н.Н.Бекетов;
- Г) Генри Кавендиш.

Задание на дом:

Задание по учебнику

28 читать, упр. 1, 3 (устно), упр. 6, 7, 8 (письменно).

Составить презентации «Знаменитые алмазы» и «Простой графитовый карандаш»

