Ионная полимеризация

Катионная полимеризация

$$H^{+}A^{-} + = C = C = \longrightarrow = CH - C^{+}(A^{-}) =$$

Анионная полимеризация

$$M^{+}A^{-} + = C = C = \longrightarrow = CA - C^{-}(M^{+}) =$$

Ионно-координационная полимеризация

Способность мономеров к полимеризации

Термодинамический фактор

$$\Delta G < 0$$

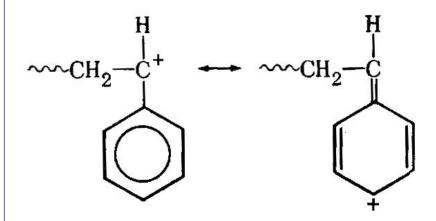
Кинетический фактор

$$V_p >> 0$$

Склонность мономеров к полимеризации

Mayayan	Тип инициирования		
Мономер	Радикальный	Катионный	Анионный
Этилен $CH_2 = CH_2$	+	+	+
α -олефины $R-CH=CH_2$	-	-	-
1,1-диалкилолефины $R_2C = CH_2$	-	+	-
$1,3$ -диены $CH_2 = CH - CH = CH - R$	+	+	+
Стирол, α -метилстирол $C_6H_5CH = CH_2$, $C_6H_5C(CH_3) = CH_2$	+	+	+
Галогенированные олефины $Hal - CH = CH_2$	+	-	-
Сложные виниловые эфиры $CH_2 = CHOCOR$	+	1	-
Простые виниловые эфиры $CH_2 = CHOR$	-	+	-
Альдегиды, кетоны $R-CH=O, R-C(O)-R'$	1	+	+
Акрилонитрил, метакрилонитрил $CH_2 = CH - CN$, $CH_2 = C(CH_3) - CN$	+	1	+
N-винилкарбазол СH=CH ₂	+	+	-

Влияние заместителя на склонность к полимеризации


Электронодонорные заместители

$$(RO-, Alk-, RCH = CH-, Ph-)$$

• увеличение электронной плотности

$$CH_2^{\delta-} = CH \leftarrow Y^{\delta+}$$

 стабилизация растущих катионов за счет резонанса

облегчают присоединение мономера к частицам катионного типа

Электроноакцепторные заместители

$$(-CN, -CH = O, -C(R) = O, -COOR)$$

• уменьшение электронной плотности

$$CH_2^{\delta+} = CH \rightarrow Y^{\delta-}$$

• стабилизация растущих анионов за счет резонанса

облегчают атаку двойной связи анионными частицами

Активные центры ионной полимеризации

$$R^{+}X^{-}, R^{-}X^{+}$$

R — ведущий ион

X - противоион

Важнейшие активные центры

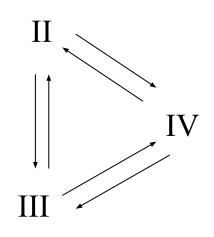
Анионные:
$$R_3C^-, R_3C^{\delta-} - Mt^{\delta+}, RO^-, RO^{\delta-} - Mt^{\delta+}, NH_2^-, OH^-$$

Катионные:
$$R_3C^+, RC^{\delta+} - Y^{\delta-}, R_3O^+, R_3O^{\delta+} - Y^{\delta-}, H^+$$

Формы активных центров

$$R^* - X \longleftrightarrow R^* ... X \longleftrightarrow R^* |S| X \longleftrightarrow R^* + X$$
I III IV

I – исходный инициатор; ведущий ион и противоион ковалентно связаны друг с другом


II – контактная ионная пара

III – сольватно разделенная ионная пара

IV – свободные ионы

14

Влияние условий полимеризации на скорость ионной полимеризации

• полярность среды

$$R^* - X \longleftrightarrow R^* ... X \longleftrightarrow R^* |S| X \longleftrightarrow R^* + X$$
I III IV

Для слабополярных растворителей

$$nR^* - X \longleftrightarrow (R^* - X)_n$$

Таблица. Значение констант скорости роста цепи при полимеризации стирола в зависимости от вида активного центра.

Тип полимеризации	T , 0 C	k_p , $M^3/(MOЛb \cdot c)$
Радикальная	20	0,035
Анионная Ионные пары Свободные ионы	25 25	0,080 650
Катионная Ионные пары Свободные ионы	25 15	0,017 3500

Влияние условий полимеризации на скорость ионной полимеризации

• Заряд ведущего иона

карбкатион

карбанион

Влияние условий полимеризации на скорость ионной полимеризации

Температура

Энергия активации реакции ионной полимеризации

$$E_V = E_{uH} + E_p - E_o$$

Для катионной полимеризации

$$E_{\nu}$$

 $E_{\scriptscriptstyle V}$ от -30 до +40 кДж/моль

Катионная полимеризация

СН2=СН-Ү, =С=О и гетероциклы

- Основные закономерности и отличия от радикальной полимеризации
- 1. Молекулярная масса полимера снижается при наличии в реакционной среде небольших добавок воды и других ионизирующихся веществ и часто не зависит от концентрации мономера
- 2. Полимеризация значительно ускоряется при применении наряду с катализаторами небольших добавок воды, кислот и других доноров протонов *(сокатализаторы);*
- 3. На реакцию существенное влияние оказывает диэлектрическая постоянная среды
- 4. Энергия активации катионной полимеризации всегда меньше 63 кДж/моль, в случае радикальной полимеризации она часто превышает эту величину. Благодаря этому катионная полимеризация, как правило, протекает с очень большой скоростью.

Элементарные реакции катионной полимеризации

Инициирование

1. Инициирование протонными кислотами.

К наиболее употребляемым для инициирования относятся:

CF3COOH

HCIO₄

HI

Способы инициирования катионной полимеризации

2. Инициирование кислотами Льюиса

кислоты Льюиса BF3, FeCl3, SnCl4, TiCl4, AlCl3, AlRnClm, POCl3

доноры протона H2O, ROH, RCOOH

доноры карбкатиона (СН3)3СС1, (С6Н5)3СС1

Образование комплекса катализатор-сокатализатор

$$BF_3 + H_2O \xrightarrow{K} BF_3 \cdot H_2O \longrightarrow H^{\dagger}[BF_3OH]^{-}$$

$$AICI_3 + (CH_3)_3CCI \xrightarrow{K} (CH_3)_3C^{\dagger}[AICI_4]^{-}$$

٠,

Способы инициирования катионной полимеризации

Влияние концентрации сокатализатора на скорость катионной полимеризации

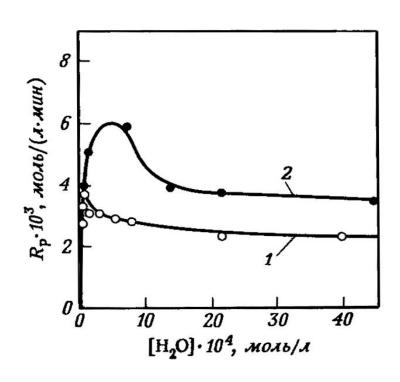


Рис. Влияние концентрации воды на скорость катализируемой $SnCl_4$ полимеризации стирола в CCl_4 при 25 С.

Концентрация катализатора, М:

1 - 0.08

2 - 0.12

$$[H_2O]/[SnCl_4] = 0,002$$
 _ ЧХУ
$$[H_2O]/[SnCl_4] = 1,0$$
 30% нитробензола, 70% ЧХУ

Способы инициирования катионной полимеризации

3. Инициирование ионизирующим излучением.

•Образование катион-радикалов под действием ионизирующего излучения

$$CH_{2}$$
=CH-O-R $\xrightarrow{\text{излучение}}$ CH_{2} -CH-O-R + e^{-}

• Димеризация

• Реакция катион-радикала с мономером

$$(CH_3)_2C = CH_2 \xrightarrow{\text{излучение}} (CH_3)_2\overset{+}{C} - \dot{C}H_2 + e^ (CH_3)_2\overset{+}{C} - \dot{C}H_2 + (CH_3)_2C = CH_2 \longrightarrow (CH_3)_3\overset{+}{C} + \dot{C}H_2 - C = CH_2$$

Способы инициирования катионной полимеризации

4. Фотоинициирование катионной полимеризации

соли диарилиодония
$$Ar_2I^+(PF_6)^-$$
 соли триарилсульфония $Ar_3S^+(SbF_6)^-$

■ Воздействие УФ-излучения

$$Ar_3S^+(SbF_6^-) \xrightarrow{hv} Ar_2S^+(SbF_6^-) + Ar^*$$

• Окислительно-восстановительная реакция с сокатализатором

$$Ar_2S^{+*}(SbF_6^{-}) \xrightarrow{HA} Ar_2S + A^* + H^{+}(SbF_6)^{-}$$

■ Собственно инициирование катионной полимеризации

м

Элементарные реакции катионной полимеризации на примере изопрена

1. Инициирование

$$BF_3 \cdot H_2O \longrightarrow H^{\dagger}[BF_3OH]^{-} + CH_2^{=}C(CH_3)_2 \xrightarrow{k_{HH}} (CH_3)_3C^{\dagger}[BF_3OH]^{-}$$

2. Рост цепи

$$(CH_3)_3C^{+}[BF_3OH]^{-} + CH_{2}^{-}C(CH_3)_2 \xrightarrow{k_p} (CH_3)_3C^{-}CH_{2}^{-}C(CH_3)_2 [BF_3OH]^{-}$$

$$\begin{array}{ccc} {\rm H}-[-{\rm CH_2C(CH_3)_2}-]_n^+ \, ({\rm BF_3OH})^- + ({\rm CH_3)_2C} = {\rm CH_2} &\longrightarrow \\ &\longrightarrow {\rm H}-[-{\rm CH_2C(CH_3)_2}-]_n - {\rm CH_2C^+(CH_3)_2(BF_3OH)^-} \end{array}$$

Значение константы скорости роста цепи при катионной полимеризации для различных мономеров

Мономер	Инициатор	Растворитель	T , 0 C	$k_p^+ \cdot 10^{-4}, \pi/($ моль $\cdot c)$	
Изобутилен	ионизирующее излучение	в массе	0	15000	
Стирол	ионизирующее излучение	в массе	15	350	
п-Метоксистирол	ионизирующее излучение	в массе	0	300	
ii wetokenemposi	$\left(C_6H_5\right)_3C^+SbF_6^-$	CH_2Cl_2	10	36	
N-винилкарбазол	$\left \left(C_6 H_5 \right)_3 C^+ SbCl_6^- \right $	CH_2Cl_2	20	60	
Изопропилви- ниловый эфир	$(C_6H_5)_3C^+SbCl_6^-$ ионизирующее излучение	CH_2Cl_2 CH_2Cl_2	0	1,1 8,6	
Изопрен	ионизирующее излучение	в массе	0	0,2	

3. Передача и обрыв цепи

Реакции передачи цепи (без обрыва кинетической цепи).

• бимолекулярная реакция передачи цепи на мономер

$$\sim\sim \text{CH}_{2}^{-}\text{C}(\text{CH}_{3})_{2} \text{ [BF}_{3}\text{OH]}^{-} + \text{CH}_{2}^{-}\text{C}(\text{CH}_{3})_{2} \xrightarrow{k_{M}} \sim\sim \text{CH} = \text{C}(\text{CH}_{3})_{2} + (\text{CH}_{3})_{3}\text{C}^{+}\text{[BF}_{3}\text{OH]}^{-}$$

• спонтанная мономолекулярная реакция передачи цепи на противоионы

$$\sim\sim$$
 CH=C(CH₃)₂ [BF₃OH] $\sim\sim$ CH=C(CH₃)₂ + BF₃·H₂O

• путем переноса гидрид-иона от мономера к активному центру

.

3. Передача и обрыв цепи

Реакции обрыва кинетической цепи.

• присоединения противоиона или его фрагмента к карбкатиону

Скорость катионной полимеризации

Основные стадии

Уравнение процесса

Кинетическое уравнение

Инициирование

$$Cat + RH \stackrel{K}{\longleftrightarrow} H^{+}(CatR)^{-}$$
$$H^{+}(CatR)^{-} + M \stackrel{k_{u}}{\longrightarrow} HM^{+}(CatR)^{-}$$

$$R_{\scriptscriptstyle M} = Kk_{\scriptscriptstyle u} [Cat] [RH] [M]$$

Рост цепи:

$$HM_n^+(CatR)^- + M \xrightarrow{k_p} HM_nM^+(CatR)^-$$

$$R_{p} = k_{p} \left[HM^{+} \left(CatR \right)^{-} \right] \left[M \right]$$

$$HM_nM^+(CatR)^- \xrightarrow{k_o} M_{n+1} + H^+(CatR)^- \qquad R_o = k_o \left| HM^+(CatR)^- \right|$$

$$R_o = k_o \left[HM^+ (CatR)^- \right]$$

Основное кинетическое уравнение и степень полимеризации

• для мономолекулярного обрыва

$$\left[HM^{+}(CatR)^{-}\right] = \frac{Kk_{u}\left[Cat\right]\left[RH\right]\left[M\right]}{k_{o}}$$
 из

из условия стационарности

Основное кинетическое уравнение

$$V = R_p = \frac{Kk_u k_p [Cat] [RH] [M]^2}{k_o}$$

Степень полимеризации

$$\overline{X}_n = \frac{R_p}{R_o} = \frac{k_p[M]}{k_o}$$

• Передача цепи на мономер

$$HM_nM^+(CatR)^- + M \xrightarrow{k_{nep.M}}$$
 $\longrightarrow M_{n+1} + HM^+(CatR)^-$

Основное кинетическое уравнение

$$V = R_p = \frac{Kk_u k_p [Cat] [RH] [M]}{k_{nep.M}}$$

Степень полимеризации

$$\overline{X}_n = \frac{k_p}{k_{nep.M}} = \frac{1}{C_M}$$

• Передача цепи на агент передачи S

$$HM_{n}M^{+}(CatR)^{-} + XA \xrightarrow{k_{nep.S}} \rightarrow HM_{n}MA + XCatR$$

Основное кинетическое уравнение

$$V = R_p = \frac{Kk_u k_p [Cat] [RH] [M]^2}{k_{nep.S} [XA]}$$

Степень полимеризации

$$\overline{X}_{n} = \frac{k_{p}[M]}{k_{nep.S}[XA]} = \frac{[M]}{C_{S}[XA]}$$

Молекулярно-массовое распределение

$$\frac{1}{n} = \frac{k_{nep}}{k_p} + \frac{k_o}{k_p[M]}$$

Если
$$k_{nep} >> k_o$$
, то $n \neq f(M)$

To
$$n \neq f([M])$$

Если
$$k_{nep} << k_o$$
,

$$_{ ext{TO}}$$
 $n \sim [M]$

Сравнение скоростей радикальной и ионной полимеризаций

Основные кинетические параметры катализируемой серной кислотой полимеризации стирола в дихлорэтане при 25 C

Параметр	Значение
$[H_2SO_4],M$	~10 ⁻³
$k_p, \pi/(\text{моль} \cdot c)$	7,6
$k_{nep.M}$, $\pi/(MOЛb \cdot c)$	1,2·10 ⁻¹
k_o (самопроизв.), c^{-1}	4,9·10 ⁻²
k_o (комбинация.), c^{-1}	6,7·10 ⁻³

Радикальная

$$k_p / k_o^{0,5}$$

$$k_p/k_o$$