ИССЛЕДОВАНИЕ ВЛИЯНИЯ автомобильного и железнодорожного транспорта на экологию нашего микрорайона

Выполнили:

учащиеся 9-х классов НОУ СОШ № 38 ОАО «РЖД»

Белик Анастасия
Валовень Татьяна
Михина С.Г.

Учитель:

Мичуринск, 2008

Гипотеза:

автомобильный транспорт оказывает большее отрицательное влияние на окружающую среду.

Цель исследования:

определить какой вид транспорта оказывает большее отрицательное влияние на окружающую среду микрорайона Кочетовка.

Задачи исследования:

- сбор и анализ литературы по влиянию различных видов транспорта;
- проведение социологического опроса среди населения микрорайона Кочетовка;
- ознакомиться с методиками проведения мониторинга окружающей среды;
- □ определить в ходе исследования степень влияния автомобильного и железнодорожного транспорта на окружающую среду микрорайона Кочетовка;
- 🛘 сделать выводы по результатам работы.

Содержание работы:

- 1.Изучить литературу и проанализировать информацию по теме «Влияние автомобильного и железнодорожного транспорта на окружающую среду».
- 2.Провести опрос жителей микрорайона Кочетовка.
 - 3. Провести анализ степени загрязнения атмосферного воздуха вблизи автомагистрали и железнодорожного полотна:
 - а) по наличию, обилию и разнообразию лишайников;
 - б) определение общей запыленности атмосферы по снегу;
 - в) определение характера загрязнения по величине рН снеговых вод;
- 4.Определить уровень загрязнения атмосферного воздуха отработанными газами автомобильного и железнодорожного транспорта.
 - 5. Результаты работы

Анализ печатных источников

Биологический вид <u>Человек разумный</u> заселяет Землю наряду с другими видами животных. На его становление и развитие действовали те же экологические факторы, что и на другие природные популяции. Однако эволюционный путь человека оказался иным, чем у остальных представителей позвоночных.

Люди за время своего существования сильно изменили природную среду. Научно-технический прогресс вызвал к жизни массу новых факторов, неблагоприятно влияющих на все живое.

Транспортно-дорожный комплекс является важнейшим составным элементом экономики России. Однако транспорт является одним из основных загрязнителей атмосферного воздуха. Его доля в общем объеме выбросов загрязняющих веществ в атмосферу от стационарных и подвижных источников по России составляет около 40%, что выше, чем доля любой из отраслей промышленности.

По видам транспорта

выбросы загрязняющих веществ распределяются следующим образом:

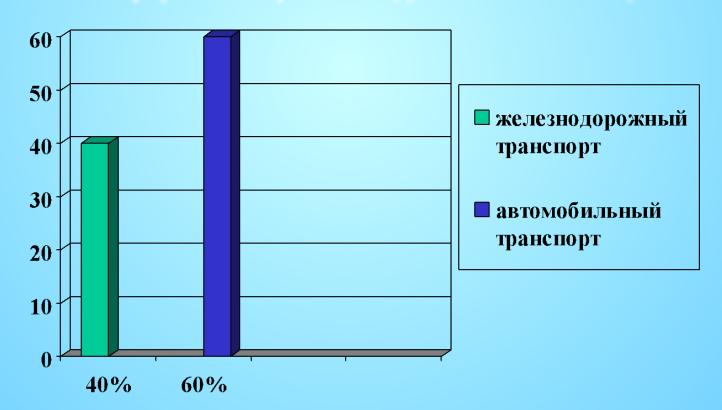
- 87 % общего выброса приходится на автомобильный транспорт
- 8% на железнодорожный
- 2 % на дорожный комплекс
- 2 % на речной и морской
- 1 % на воздушный

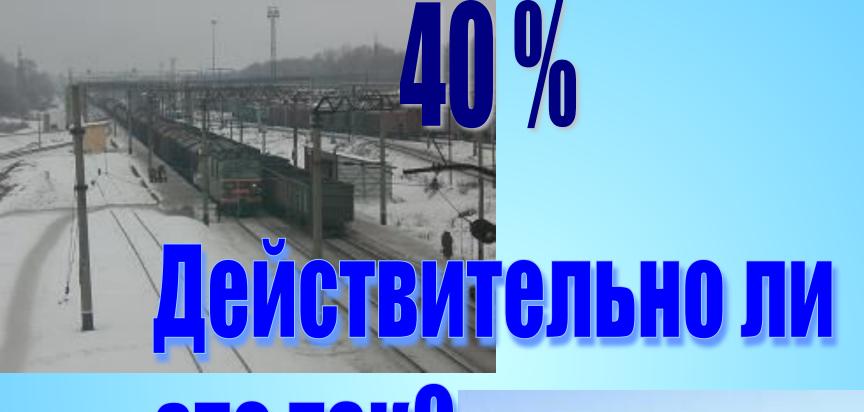
Данные взяты из (3), см. информационные ресурсы

Наш микрорайон Кочетовка — крупнейший железнодорожный узел. Поэтому в данном случае влияние железнодорожного

транспорта

велико. Однако, в микрорайоне расположена и автодорога.


Мы задались вопросом:


«Автомобильный или железнодорожный транспорт оказывает наиболее сильное отрицательное экологическое влияние на наш микрорайон?»

И решили провести исследование по данной проблеме.

Результаты социологического опроса

«Какой вид транспорта оказывает наибольшее отрицательное влияние на экологическую обстановку микрорайона города Мичуринска - Кочетовку?»

3TO Tak?

Определение запылености воздуха вблизи автотрассы и железнодорожного полотна по наличию и обилию лишайников

Лишайники являются биоиндикаторами состояния воздушной среды. Они очень нетребовательны к факторам внешней среды, но для своего нормального существования они нуждаются в чистом воздухе. В городах с загрязненной атмосферой они редки, главный враг лишайников в городах — сернистый газ. Особенно удобны лишайники в качестве индикаторов небольшого загрязнения окружающей среды.

Наблюдение за состоянием лишайников проводили на маршруте длиной в 100 м на расстоянии 30 м от автодороги и железнодорожного полотна.

И вот что мы увидели!

Автотрасса

На протяжении всего маршрута наблюдали развитие накипных и листовых лишайников

Железнодорожное

На протяжении всего маршрута встретилось небольшое количество деревьев, на стволах которых развиваются накипные лишайники

Диагноз о степени загрязнения атмосферными выбросами поставили, пользуясь оценочной школой следующего вида.

Оценка степени загрязнения	Загрязнение воздуха сернистым газом, мг/м ³	Оценка встречаемости лишайников
Сильное загрязнение	Больше 0,3 – 0,5	Лишайники на деревьях и камнях отсутствуют
Довольно сильное	Около 0,3	Лишайники также отсутствуют на стволах деревьев и камнях. На северной стороне деревьев и в затененных местах встречается зеленоватый налет водоросли плеврококкус
Среднее	От 0,05 до 0,2	Появление на стволах и у основания деревьев серозеленоватых твердых накипных лишайников леканоры, фисции
Небольшое	Не превышает 0,05	Развитие накипных лишайников – леканоры, водоросли плеврококкуса, появление листоватых лишайников
Практически незагрязненная среда	Малое содержание	Появление кустистых лишайников

Сравнив полученные данные с таблицей, мы пришли к выводу

Загрязнение атмосферного воздуха сернистым газом не превышает 0, 05 мг/м³

Загрязнение атмосферного воздуха сернистым газом от 0,05 до 0,2 мг/м³

Определение общей запыленности атмосферы по снегу

Отбор проб проводили на расстоянии 30 м от автотрассы и железнодорожного полотна, на всю глубину сугроба (по 1 ведру).

При отборе снег утрамбовали, внесли в помещение и оставили для оттаивания.

Оттаявшую снеговую воду профильтровали через предварительно взвешенные бумажные фильтры.

Осадок, осевший на фильтре, высушили и взвесили.

Вес осадка вычислили как разницу веса бумажного фильтра до и после взвешивания.

Автотрасса

М (фильтра) =
$$0.9 \, \Gamma$$
.

$$\mathbf{M}$$
 (пылевой фракции) = 1,22 $-$ 0,9 = $\mathbf{0}$,32 $\mathbf{\Gamma}$.

Железнодорожное полотно

$$M_{(\phi ильтра)} = 0,9 \Gamma.$$

М (фильтра с остатком) =
$$1.8 \, \Gamma$$
.

$$\mathbf{M}$$
 (пылевой фракции) = 1,8 - 0,9 = **0,9** г.

Полученный результат характеризует общее накопление пылевой фракции в снеговом покрове.

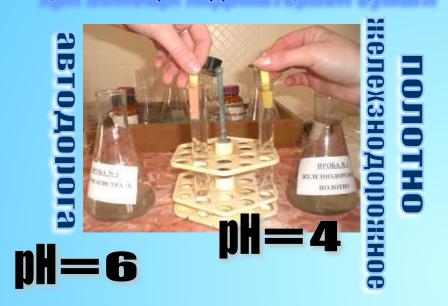
Мы получили следующие результаты:

Масса (пылевой фракции)

0,32 г.

0,9 г.

Определение характера загрязнения по величине рН снеговых вод


Снеговая вода может нести и много специфической информации о загрязнении, особенно информативным оказывается показатель величины рН (кислотно-щелочной реакции) снеговых вод. В обычно незагрязненном состоянии он изменяется от 5,5 до 5,8.

Поэтому мы проверили величину рН снеговой воды вблизи автодороги и железнодорожного полотна.

Проверили значение рН при помощи индикаторной бумаги

Низкие значения рН вблизи автодороги свидетельствуют о «подкислении» снеговых вод и преобладанием оксидов серы и азота. И в том и другом случае повышенное значение рН снеговых вод вблизи железнодорожного полотна обозначает слабощелочную среду, что связано с наличием частиц, содержащих соединения гидрокарбонатов калия, магния, повышающих рН снеговой воды.

Проверили значение рН при помощи индикатора - лакмуса

Загрязнение атмосферного воздуха отработанными газами автотранспорта

Загрязнение атмосферного воздуха отработанными газами **автотранспорта** оценивали по концентрации окиси углерода (в мг/м³), используя формулу (Бегма и др., 1984; Шаповалов, 1990):

 $Kco = (0,5+0,01N \cdot KT) \cdot Ka \cdot Ky \cdot Kc \cdot KB \cdot K\Pi$, где:

- 0,5 фоновое загрязнение атмосферного воздуха нетранспортного происхождения, $M\Gamma/M^3$,
- N суммарная интенсивность движения автомобилей на городской дороге, автом./час,
- Кт коэффициент токсичности автомобилей по выбросам в атмосферный воздух окиси углерода,
- Ка коэффициент, учитывающий аэрацию местности,
- Ку коэффициент, учитывающий изменение загрязнения атмосферного воздуха окисью углерода в зависимости от величины продольного уклона,
- Кс коэффициент, учитывающий изменения концентрации окиси углерода в зависимости от скорости ветра,
- Кв то же в зависимости от относительной влажности воздуха,
- Кп коэффициент увеличения загрязнения атмосферного воздуха окисью углерода у пересечений.

Наблюдения за интенсивностью движения автомобилей в обоих направлениях проводились нами в течении часа. Все значения коэффициентов определили по таблицам, используя книгу Колбовского Е.Ю. «Изучаем природу в городе».

Интенсивность автотранспорта

- У 9 % грузовых автомобилей с малой грузоподъемностью;
- ✓ 4 % грузовых автомобилей со средней грузоподъемностью;
- ✓ 1 % грузовых автомобилей с большой грузоподъемностью;
- ✓ 12 % автобусов;
- ✓ 74 % легковых автомобилей.

Все значения коэффициентов определили по таблицам, используя книгу Колбовского Е.Ю. «Изучаем природу в городе».

$$Kco = (0,5+0,01N \cdot KT) \cdot Ka \cdot Ky \cdot Kc \cdot KB \cdot Kп$$

N = 218 автом./ час

Кт определяется как средневзвешенный для потока автомобилей по формуле

$$KT = \sum Pi \cdot KTi$$
,

где: Рі – состав автотранспорта в долях единицы,

Кті – определили по табл. «Коэффициент токсичности выбросов по типам автотранспорта»

$$\mathbf{KT} = 0.09 \cdot 2.3 + 0.04 \cdot 2.9 + 0.01 \cdot 0.2 + 0.12 \cdot 3.7 + 0.74 \cdot 1.0 = 1.509 \,\mathrm{Mg/M}^3$$

Ka - 0.4;

 $\mathbf{Ky} - 1,06$ (городская дорога с уклоном в 2°);

Kc - 1,00 (в момент опыта дул ветер со скоростью 6 м/с);

 $K_B - 1,30$ (в момент проведения опыта влажность воздуха была 90);

Кп – в нашем случае исследовали участок дороги без пересечений.

$$Kco = (0.5+0.01\cdot218\cdot1.509)\cdot0.4\cdot1.06\cdot1.00\cdot1.30 = 2.09 \text{ M}\Gamma/\text{M}^3$$

Загрязнение атмосферного воздуха отработанными газами железнодорожного транспорта

Для исследования были взяты данные с предприятия железнодорожная станция Кочетовка (ДС), находящуюся параллельно автотрассе.

Концентрация окиси углерода составила:

 $Kco=2,42 \text{ MT/ } \text{M}^3$

Концентрация окиси углерода составила:

2,09мг/м³

2,42 MT/M³

Результаты работы

Запыленность атмосферы по наличию лишайников

Запыленность атмосферы по снегу

меньшее влияние

ВЛИЯНИЕ

Загрязнение по величине рН снеговых вод

Концентрация окиси углерода

Показатели проведенных опытов оказались выше на железнодорожном транспорте.

Поэтому, в процессе своего исследования мы пришли к выводу, что большее отрицательное экологическое воздействие на наш микрорайон оказывает железнодорожный транспорт.

Скорее всего, это связано с тем, что наш микрорайон – крупнейший железнодорожный узел Юго – Восточной железной дороги.

Информационные ресурсы:

- **1. Колбовский Е.Ю.** Изучаем природу в городе. Ярославль: Академия развития, 2006. 256 с.: ил. (Экскурсии в природу).
- **2. Маслов Н.Н., Коробов Ю.И.** Охрана окружающей среды на железнодорожном транспорте: Учеб. для вузов. М.: Транспорт, 1996. 238 с.
- **3. Павлова Е. И.** Экология транспорта: Учебник для вузов. М.: Транспорт, 2000. 248 с.
- **4. Швец И.М., Добротина Н.А.** Биосфера и человечество: Учебное пособие для учащихся 9 класса общеобразовательных учреждений. М.: Вентана-Граф, 2004. 114 с.:ил.