РЕНТГЕНОВСКАЯ ТОМОГРАФИЯ В новых технологиях все шире используются не полностью упорядоченные системы (не кристаллы). В то же время необходимо исследовать их структуру. Рентгеноструктурный анализ не годится.

Но можно использовать другие эффекты:

- Отражение
- Поглощение
- Рассеяние

Если мы дадим волю своей фантазии и вообразим, что новый фотографический метод, использующий трубку Крукса, будет усовершенствован до такой степени, что только часть мягкотканых структур тела останутся прозрачными, и мы могли бы запечатлеть на фотопластинке слой, расположенный под ними, то такая возможность оказала бы неоценимую помощь в диагностике бесчисленных заболеваний, не связанных напрямую с костными структурами! Цитата из газеты «Франкфуртер Цайтунг» от 7 января 1896 г.

Wilhelm Conrad Röntgen (March 27, 1845 – February 10, 1923) Print of Wilhelm Röntgen's (1845-1923) first x-ray, the hand of his wife Anna, presented to Professor Ludwig Zehnder of the Physik Institut, University of Freiburg, on 1 January 1896.

An X-ray picture (radiograph) taken by Röntgen of Albert von Kölliker's hand

1895	Рентген открывает новый вид излучения, позже названный в его честь рентгеновским
1901	За исследование свойств рентгеновского излучения Рентген получил Нобелевскую премию по физике
1917	Радон дает математическое обоснование реконструкции изображения поперечного сечения объекта по результатам измерений пропускания излучения
1963	Кормак описывает методику расчета распределения коэффициентов поглощения в теле человека [Cormack, 1963]
1972	Хаунсфилд и Эмброз проводят первое медицинское исследование с применением КТ
1974	В мире насчитывается 60 медицинских КТ-систем — томографов для исследования головного мозга
1975	Вводится в эксплуатацию первый томограф для исследований всего тела
1979	Хаунсфилд и Кормак получают Нобелевскую премию
1989	В. А. Календер и П. Вок проводят первое клиническое исследование с применением спирального томографа [Kalender, 1989; Kalender, 1990b]
1998	Появляются первые четырехспиральные компьютерные томографы
2000	Появляются комбинированные системы ПЭТ/КТ
2001	Появляются 16-спиральные КТ
2004	Появляются 64-спиральные КТ
2004	В мире насчитывается более 40 000 КТ для медицинских целей
2005	Появляются мультиспиральные КТ с 2 трубками

The Nobel Prize in Physiology or Medicine 1979

"for the development of computer assisted tomography"

d. 2004

Allan M. Cormack ⁽⁰⁾1/2 of the prize

USA

Tufts University Medford, MA, USA

b. 1924 (in Johannesburg, South Africa) d. 1998

Godfrey N. Hounsfield ^(*)1/2 of the prize United Kingdom Central Research Laboratories, EMI London, United Kingdom b. 1919

Б.К. Вайнштейн

Метод обратного проецирования

Рис. Схема восстановления томограммы по алгоритму обратного проецирования: а – получение проекций, б – суммирование обратных проекций

Расчет томограмм. Наиболее простыми для понимания алгоритмами реконструкции являются алгебраические, в которых N² неизвестных компонент матрицы изображения размером N x N определяются из решения системы линейных уравнений. Для реконструкции больших матриц приходится использовать итерационные методы вычислений

Пусть µ(x) – коэффициент поглощения рентгеновских лучей объектом в точке х

 $\Delta I / I = \mu(x) \Delta x$

Измеряется

Требуется найти

Спектр излучения рентгеновской трубки

Спектр поглощения рентгеновского излучения

Современные томографы

Медицинские томографы (Siemens SOMATOM motion 0.5 x 0.8 mm)

В современных томографах используются кольцевые токосъемники со скользящим контактом, обеспечивающие непрерывный сбор данных. Фотография гентри во время сборки: слева видны кольцевые токосъемники, справа внутренние компоненты измерительной системы (а). Схема кольцевых токосъемников: через них подается электропитание рентгеновской трубки и принимаются с детектора данные, которые затем передаются в модуль реконструкции изображений

Вращающаяся рентгеновская трубка в закрытой камере прочнее и обеспечивает прямое охлаждение задней поверхности анода. При этом максимальная мощность практически не изменяется, а паузы между включениями трубки значительно сокращаются (обычно до 20с). Схема (а) и фотография трубки Straton, умещающейся на ладони (б)

Современные микротомографы

Лабораторные установки (SkyScan 1174 compact 6...30 µm)

Повышение разрешения лабораторной рентгеновской томографии и информативности экспериментальных данных

Выбор диапазона рентгеновского излучения

	Вода	Глюкоза	Белок	Липиды	CaC ₂ O ₄
Е(Эв)	L(мм)	L(мм)	L(мм)	L(мм)	L(мм)
5000	0,234	0,194	0,233	0,500	0,029
5500	0,313	0,260	0,311	0,670	0,038
6500	0,522	0,435	0,516	1,123	0,059
7000	0,655	0,547	0,647	1,413	0,073
8000	0,989	0,826	0,972	2,135	0,106
17500	10,162	8,246	9,406	18,924	0,983
22000	17,753	13,876	15,821	28,805	1,896
30000	30,904	22,623	26,036	40,752	4,505

Реконструкции спинного мозга крыс на длине волны Мо Кα (λ=0,71 Å)

Реконструкции спинного мозга крыс на длине волны Cu Kα (λ=1,54 Å)

<u>c/</u>

Зависимость поглощённой дозы от длины волны зондирующего излучения при размере исследуемого объекта 10 мм

В.Е.Асадчиков, А.В.Бузмаков, Д.А.Золотов, Р.А.Сенин, А.С.Геранин. Лабораторные рентгеновские микротомографы на монохроматичном излучении. //Кристаллография, 2010, том 55, №1, с. 167 - 176

Созданные прототипы

	Поле зрения	Разрешение	Тип используемого детектора	Используемые рентгенооптически е элементы
1	0.1×100 MM	150 мкм	Линейный позиционно чувствительный детектор с линией задержки	-
2	10×10 мм	13 мкм	ССD-матрица 1024×1152 пикселя	
3	1×1 мм	6 мкм	CCD-матрица 2048×2048 пикселя	Многоэлементная пузырьковая линза
4	0.6×0.6 мм	1-2 мкм	ССD-матрица 2048×2048 пикселя	Асимметрично срезанные совершенные кристаллы монохроматоры

Схема микротомогрофа с использованием линейного позиционно-чувствительного детектора

Рентгеновская трубка. 2 - Монохроматор.
Исследуемый объект. 4 - Линейный позиционно-чувствительный детектор

Дифрактометр ДРШ

1 – ренттеновская трубка,
2 – кристалл-монохроматор,
3,12 – коллимационная система,
4 – кольцевая опора рентгеновской
трубки, 5 - кольцевая опора детектора,
6 – сцинтилляционный детектор,
7 – ось вращения кольцевых опор(4 и
5),
8 – исследуемый образец,
9 – держатель образца с юстировачным

столом,

10 – рентгеновский пучок,

11 – линейный позиционно-

чувствительный детектор,

13 – кристалл-анализатор.

Схема томографа с двумерным ССD-детектором

Рентгеновская трубка. 2 - Монохроматор.
Исследуемый объект. 4 - ССД-детектор

Опрос ССD-детектора

Фотон, попавший в полупроводник, порождает некоторое количество свободных электронов. Они накапливаются в имеющихся ямах. К ямам и интервалам между ними подключены электроды, которые могут вызывать такое изменение потенциала, что электроны перетекают в соседние ячейки по последней строке, затем строки сдвигаются. Считывание (измерение заряда) происходит в одной, крайней, ячейке в последней строке.

Эпифиз человека

Секреторная активность пинеалоцитов в эпифизе человека при циркадианном ритме

∎СЕРОТОНИН

•N-Ацетилтрансфераза •S-100 + 2 Ca •N-Ацетил-5-гидрокситриптамин •S-100 + 2 Ca •Гидроксииндол-0метилтрансфераза

S-100 + 2 Ca

S-100 + 2 Ca

∎МЕЛАТОНИН

Эпифиз здорового человека

Масштаб – произв. единицы (10 ед. – 1 мм)

Эпифиз при болезни Альцгеймера

Масштаб – произв. единицы (10 ед. – 1 мм)

Эпифиз при шизофрении

Эпифиз здорового человека

Рентгеновская линза

1 — диафрагма 2 — капилляр 3- полимер

Внутренний диаметр капилляра 0.8 мм Количество пузырьков 67

Фокусное расстояние для CrKa - 95 мм, а для линии CuKa 180 мм.

Микротомограф с рентгеновской линзой

Увеличение с помощью ассиметричного кристалла

Известно, что при асимметричном брэгговском отражении происходит изменение линейных размеров отраженного пучка b по сравнению с падающим а. В рамках геометрической оптики их отношение определяется выражением:

 $b/a = \sin \beta / \sin \alpha$

где α - угол падения, а β - отражения.

1- Рентгеновская трубка. 2- Исследуемый объект. 3,4 – асимметричные кристаллы 5- ССD детектор

Однолетний самец сибирского углозуба (Salamandrella keyserlingii).

1D-детектор, Время проведения эксперимента 1 неделя 2D-детектор, Время проведения эксперимента 1,5 часа

Для биологов этот тритон примечателен тем, что имеет самый северный ареал обитания. Дополнительного контрастирования не применялось.

Геккон Pachydactylus bibroni

Примеры исследованных объектов

Объемные изображения: а - зерновка ячменя сорта «Скарлет», b – вид зерновки после проращивания ее на солод (корешки удалены)

Поперечные срезы зерновки солода сорта «Скарлет» до и после проращивания ее на солод: **a,e** – основание зерновки, b,f – средняя часть зародыша зерновки, c,g – средняя часть эндосперма зерновки. d, h – поперечное сечение

Зонды для дренирования ЖКТ и энтерального питания (катетеры)

Проблема пластификаторов Скорость миграции пластификатора (эксперимент)

Поглощение катетерами излучения разной энергии

a 40K

4%

a 30K

2%

a 20K

0.07%

Геккон Pachydactylus bibroni

Фотография геккона

Реконструкция челюсти геккона

Томографическая реконструкция зубов геккона

Увеличенное изображение зуба

x1

Рабочий диапазон по шкале Хаунсфельда КТ-число = $(\mu_T - \mu_{H20}) / \mu_{H20} *1000$ HU

Параметры	Компьютерная (медицинская) томография	Лабораторные рентгеновские источники
Излучение	Белое (розовое) λ _{max} ≈ 0.2 Å	Монохроматичное λ _{Kα} = 2.29, 1.93, 1.78, 1.54, 0.71, 0.56 Å
Диапазон по шкале Хаунсфельда	-1000 – 3000	-1000 – 230000
Чувствительность в шкале Хаунсфельда	5%	20%
Доза	~0.5 – 5 бэр	~1 бэр

Современные микротомографы

Использующие в качестве источника излучения синхротрон или источники с вращающимся анодом (XRADIA nanoXCT, 50 nm с применением зонной пластинки)

www.xradia.com

Томография клетки

http://www.nature.com/materials/news/newsandviews/060810/442642b_f2.html

«топо-томография»*

* W. Ludwig et. al. Three-dimensional imaging of crystal defects by `topo-tomography' // J. Appl. Cryst. 2001. 34. p. 602-607

