Определенный интеграл

Лекция 13.12.2016

<u>Элементы интегрального</u> <u>исчисления</u>

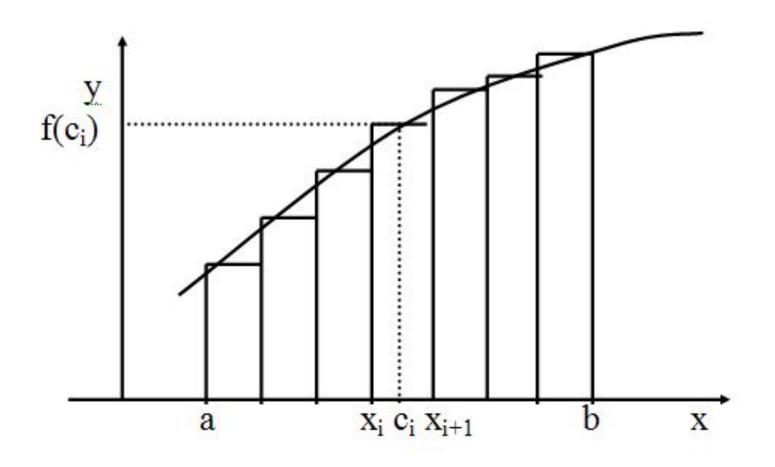
- 1.Определение определенного интеграла
- 2.Основные свойства определенного интеграла
- 3.Формула Ньютона-Лейбница
- 4.Методы интегрирования
- 5.Геометрические приложения определенного интеграла
- 6.Несобственные интегралы.

Определенный интеграл, его свойства и вычисление

<u>Понятие определенного</u> <u>интеграла</u>

Рассмотрим функцию y=f(x), непрерывную и ограниченную на отрезке [a,b]. Разобьем [a,b] на n элементарных отрезков Δx_i произвольной длины, возьмем на каждом отрезке Δx_i произвольную точку с, и вычислим значение функции f(c,) в этих точках.

<u>Геометрическое изображение</u> <u>определения</u>



<u>Определение интегральной</u> <u>суммы</u>

Интегральной суммой для функции y=f(x) на отрезке [a,b] называется сумма произведений длин элементарных отрезков Δx_i на значения функции $f(c_i)$ в произвольных точках этих отрезков

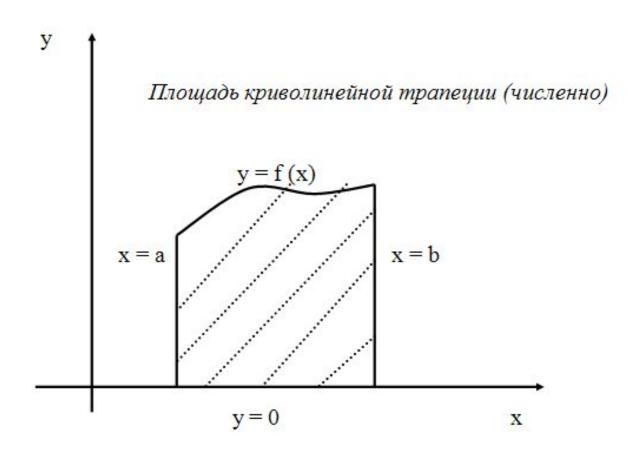
$$S_n = \sum_{i=1}^n f(c_i) \Delta x_i$$

<u>Определение определенного</u> <u>интеграла</u>

Определенным интегралом от функции f(x) на отрезке [a,b] называется предел (если он существует) интегральной суммы для функции f(x) на отрезке [a,b], не зависящий от способа разбиения отрезка [a,b] и выбора точек c_i , найденный при условии, что длины элементарных отрезков (включая и максимальный Δx_{max}) стремятся к нулю.

$$\int_{a}^{b} f(x)dx = \lim_{\max\{\Delta x_i\} \to 0} S_n = \lim_{\max\{\Delta x_i\} \to 0} \left(\sum_{i=1}^{n} f(c_i) \Delta x_i \right)$$

<u>Геометрический смысл</u> <u>определенного интеграла</u>



1⁰ Величина определенного интеграла не зависит от обозначения переменной интегрирования *(инвариантность):*

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$$

2⁰ При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный *(перестановочность)*:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{a} f(x)dx = 0$$

3⁰ Если промежуток интегрирования [a,b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутку [a,b], равен сумме определенных интегралов, взятых по всем его частичным промежуткам (аддитивность):

$$\int_{a}^{[a,b]=[a,c] \times [c,b]} \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

4⁰ Определенный интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих функций (линейность):

$$\int_{a}^{b} \left(\sum_{i=1}^{n} k_i f_i(x) \right) dx = \sum_{i=1}^{n} \left(k_i \int_{a}^{b} f_i(x) dx \right)$$

5°. Если подынтегральная функция f(x) на отрезке интегрирования сохраняет постоянный знак, то определенный интеграл представляет собой число того же знака, что и функция, при условии b>a (монотонность):

если
$$sgn(f(x))=const$$
, то и $sgn \int_a^b f(x)dx = sgn(f(x))$.

6°. Модуль интеграла функции не превосходит интеграл от модуля функции (*неравенство по модулю*) | ^b

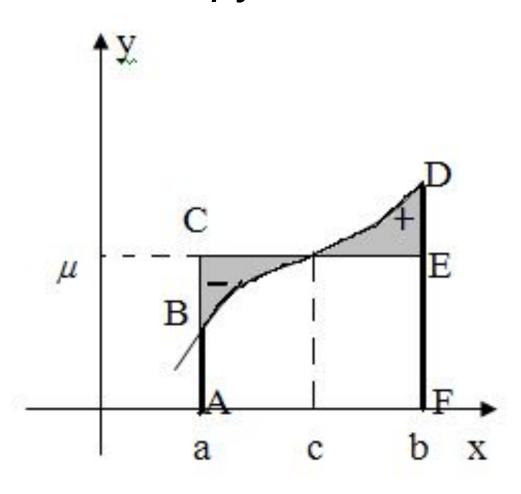
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

7°. Определенный интеграл от непрерывной функции равен произведению значения этой функции в некоторой промежуточной точке x=c отрезка интегрирования [a,b] на длину отрезка b-a (теорема о среднем значении функции):

значении функции):
$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$
 $\mu = f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

Значение f(c) называется средним значением функции на отрезке [a,b]

<u>Теорема о среднем значении</u> функции



Формула Ньютона-Лейбница.

Определенный интеграл равен разности значений первообразной подынтегральной функции для верхнего и нижнего пределов интегрирования.

$$\int_{a}^{b} \mathbf{f}(\mathbf{x}) d\mathbf{x} = F(x) \Big|_{a}^{b} = F(b) - F(a)$$
, где $\int_{a}^{b} - \mathbf{s}$ знак двойной подстановки

Методы интегрирования

<u>Непосредственное</u> <u>интегрирование</u>

Этот способ основан на использовании свойств определенного интеграла, приведении подынтегрального выражения к табличной форме путем тождественных преобразований и применении формулы Ньютона-Лейбница.

Вычислить определенный интеграл: $\int_{1}^{2} |1-x| dx$

$$\int_{0}^{2} \left| 1 - x \right| dx = \int_{0}^{1} (1 - x) dx + \int_{1}^{2} (x - 1) dx = \int_{1}^{0} (x - 1) dx + \int_{1}^{2} (x - 1) dx = \frac{(x - 1)^{2}}{2} \bigg|_{1}^{0} + \frac{(x - 1)^{2}}{2} \bigg|_{1}^{2} = \frac{1}{2} (1 + 1) = 1$$

Замена переменной

Для решения определенного интеграла $\int f(g(x))g'(x)dx$ методом подстановки заменяют g(x)=t; dt=g'(x)dx и находят пределы изменения переменной t при изменении x от a до b из соотношений: $g(a)=\alpha$ и $g(b)=\beta$.

Тогда
$$\int\limits_a^b f(g(x))g'(x)dx = \int\limits_\alpha^\beta f(t)dt = F(t)\Big|_\alpha^\beta = F(\beta) - F(\alpha)$$
, где $F(t)$ -первообразная функции $f(g(x))=f(t)$.

Вычислить
$$\int_{0}^{2} \frac{dx}{\sqrt{4-x}}$$

$$\int_{0}^{2} \frac{dx}{\sqrt{4-x}} = \begin{bmatrix} t = 4-x & \text{новые пределы} \\ dt = -dx & \text{при } x = 0 & t = 4 \\ \text{при } x = 2 & t = 2 \end{bmatrix} = -\int_{4}^{2} \frac{dt}{\sqrt{t}} = \int_{2}^{4} t^{-1/2} dt = \int_{2$$

$$= 2t^{1/2}\Big|_{2}^{4} = 2\sqrt{t}\Big|_{2}^{4} = 2(\sqrt{4} - \sqrt{2}) = 2(2 - \sqrt{2}).$$

<u>Интегрирование по частям</u>

$$\int_{a}^{b} u dv = (uv) \Big|_{a}^{b} - \int_{a}^{b} v du$$

Вычислить
$$\int_{1}^{2} \ln x dx$$

$$\int_{1}^{2} \ln x dx = (x \ln x) \Big|_{1}^{2} - \int_{1}^{2} x \frac{dx}{x} = 2 \ln 2 - \ln 1 - x \Big|_{1}^{2} =$$

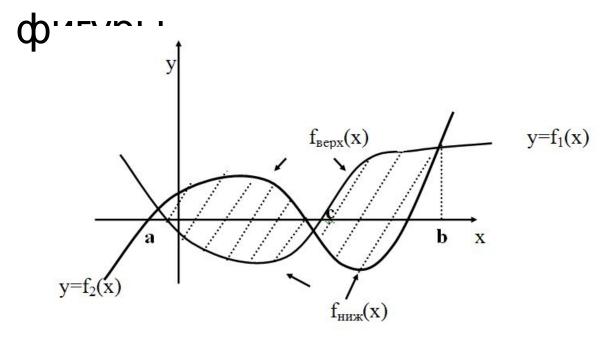
$$2 \ln 2 - (2 - 1) = 2 \ln 2 - 1$$

Вспомогательная таблица для интегрирования по частям

Подынтегральное	Обозначение	Обозначение	Сколько раз?
выражение udv	в качестве и	в качестве dv	
$P_n(x)e^x dx$	$P_n(x)$	e ^x dx	n
$P_n(x) \ln x dx$	ln x	$P_{\kappa}(x)dx$	1
$P_n(x)\cos x dx$	$P_n(x)$	cos xdx	n
$P_n(x)\sin x dx$	$P_n(x)$	sin <i>xdx</i>	n
$P_n(x)$ arctgxdx	arctgx	$P_n(x)dx$	1
$e^x \cos x dx$	e ^x	cos xdx e*dx	2
$e^x \sin x dx$	e ^x sin x	sin xdx e ^x dx	2

Основные приложения определенного интеграла.

Площадь плоской



$$S = \int_{a}^{b} \left(f_{eepx}(x) - f_{hux}(x) \right) dx = \int_{a}^{c} \left[f_{2}(x) - f_{1}(x) \right] dx + \int_{c}^{b} \left[f_{1}(x) - f_{2}(x) \right] dx$$