Неопределенный интеграл

Лекция 13.10.2016 г.

<u>Элементы интегрального</u> <u>исчисления</u>

- 1.Первообразная и неопределенный интеграл
- 2.Основные приемы вычисления неопределенных интегралов
- 3.Интегрирование функций, содержащих квадратный трехчлен
- 4.Интегрирование дробно-рациональных функций
- 5.Интегрирование тригонометрических функций
- 6.Интегрирование некоторых иррациональностей

Неопределенный интеграл, его свойства и вычисление

<u>Первообразная и неопределенный</u> <u>интеграл</u>

Определение. Функция F(x) называется первообразной функции f(x), определенной на некотором промежутке, если F'(x) = f(x) для каждого x из этого промежутка. Например, функция $\cos x$ является первообразной функции $-\sin x$, так как $(\cos x)' = -\sin x$.

<u>Первообразная и неопределенный</u> <u>интеграл</u>

Если F(x)- первообразная функции f(x), то F(x)+C, где C - некоторая постоянная, также является первообразной функции f(x).

Если F(x) есть какая-либо первообразная функции f(x), то всякая функция вида $\Phi(x) = F(x) + C$ также является первообразной функции f(x) и всякая первообразная представима в таком виде.

<u>Первообразная и неопределенный</u> <u>интеграл</u>

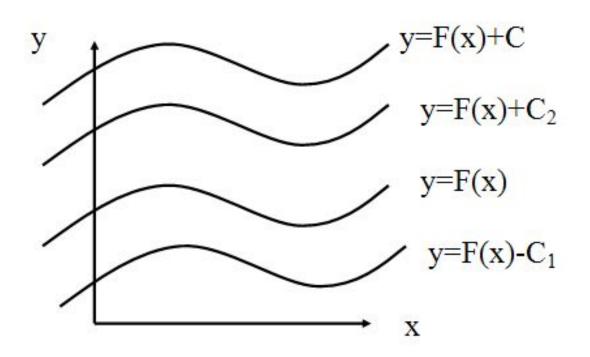
Определение. Совокупность всех первообразных функции f(x), определенных на некотором промежутке, называется неопределенным интегралом от функции f(x) на этом промежутке и обозначается $\int f(x) dx$.

<u>Первообразная и неопределенный</u> <u>интеграл</u>

Если F(x)- некоторая первообразная функции f(x), то пишут $\int f(x) dx = F(x) + C$, хотя правильнее бы писать $\int f(x) dx = \{F(x) + C\}$. Мы по устоявшейся традиции будем писать $\int f(x) dx = F(x) + C$.

Тем самым один и тот же символ $\int f(x)dx$ будет обозначать как всю совокупность первообразных функции f(x), так и любой элемент этого множества.

<u>Геометрический смысл</u> неопределенного интеграла



<u>Свойства интеграла,</u> вытекающие из определения

Производная неопределенного интеграла равна подынтегральной функции, а его дифференциалподынтегральному выражению. Действительно:

1.
$$(\int f(x)dx)' = (F(x) + C)' = F'(x) = f(x);$$

2.
$$d\int f(x)dx = (\int f(x)dx)'dx = f(x)dx.$$

Свойства интеграла, вытекающие из определения

Неопределенный интеграл от дифференциала непрерывно дифференцируемой функции равен самой этой функции F'(x) достоянной:

3. F(x) F'(x). так как является первообразной для

Свойства интеграла

4. Если функции $f_1(x)$ и $f_2(x)$ имеют первообразные, то функция $f_1(x) + f_2(x)$ также имеет первообразную, причем $\iint [f_1(x) + f_2(x)] dx = \iint f_1(x) dx + \iint f_2(x) dx;$ 5. $\int Kf(x)dx = K \int f(x)dx;$ 6. $\int f'(x)dx = f(x) + C$; 7. $\int f(\varphi(x))\varphi'(x)dx = F[\varphi(x)] + C.$

<u>Таблица неопределенных</u> <u>интегралов</u>

$$\mathbf{1.} \int dx = x + C.$$

2.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + C, (a \neq -1).$$

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

$$4. \int a^x dx = \frac{a^x}{\ln a} + C.$$

$$5. \int e^x dx = e^x + C.$$

$$\mathbf{6.} \int \sin x dx = -\cos x + C.$$

$$7. \int \cos x dx = \sin x + C.$$

$$8. \int \frac{dx}{\sin^2 x} = -ctgx + C.$$

$$9. \int \frac{dx}{\cos^2 x} = tgx + C.$$

10.
$$\int \frac{dx}{1+x^2} = arctgx + C$$
.

<u>Таблица неопределенных</u> <u>интегралов</u>

$$11. \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C.$$

11.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$
. **12.** $\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C$..

13.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$
.

13.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \left(\frac{x}{a} + C \right).$$
 14. $\int \frac{dx}{\sqrt{x^2 \pm a}} = \ln \left| x + \sqrt{x^2 \pm a} \right| + C.$

15.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

15.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$
 16.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$
.

Использование свойств дифференциала

При интегрировании удобно пользоваться свойствами:

$$1. dx = \frac{1}{a}d(ax)$$

$$2. dx = \frac{1}{a}d(ax+b),$$

$$3. xdx = \frac{1}{2}dx^2,$$

4.
$$x^2 dx = \frac{1}{3} dx^3$$
.

Примеры

Пример. Вычислить $\int \cos 5x dx$.

Решение. В таблице интегралов найдем $\int \cos x dx = \sin x + C$.

Преобразуем данный интеграл к табличному, воспользовавшись тем, что d(ax) = adx.

Тогда:

$$\int \cos 5x dx = \int \cos 5x \frac{d(5x)}{5} = \frac{1}{5} \int \cos 5x d(5x) =$$

$$= \frac{1}{5} \sin 5x + C.$$

<u>Примеры</u>

Пример. Вычислить $\int (x^2 + 3x^3 + x + 1) dx$.

Решение. Так как под знаком интеграла находится сумма четырех слагаемых, то раскладываем интеграл на сумму четырех интегралов:

$$\int (x^2 + 3x^3 + x + 1)dx = \int x^2 dx + 3\int x^3 dx + \int x dx + \int dx = 0$$

$$= \frac{x^3}{3} + 3\frac{x^4}{4} + \frac{x^2}{2} + x + C$$

Интеграл от сложной функции, аргумент которой является линейной функцией

При вычислении интегралов удобно пользоваться следующими свойствами интегралов:

Если
$$\int f(x)dx = F(x) + C$$
, то $\int f(x+b)dx = F(x+b) + C$.

Если
$$\int f(x)dx = F(x) + C$$
, то $\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$.

Пример

$$\int (2+3x)^5 dx = \frac{1}{3\cdot 6} (2+3x)^6 + C.$$

Методы интегрирования

<u>Интегрирование</u>

Используя свойства неопределенного интеграла и формулы школьного курса, приводят подынтегральную функцию к табличному виду.

Замена переменной

Требуется найти $\int f(x)dx$, причем непосредственно подобрать первообразную для f(x) мы не можем. Часто удается найти первообразную, введя новую переменную, по формуле

$$\int f(x)dx = \int f[\varphi(t)]\varphi'_t(t)dt$$
, где $x = \varphi(t)$, а t -новая переменная.

Подынтегральное выражение представляет собой дифференциал сложной функции. Предположить вид новой переменной поможет знание таблицы производных.

Интегрирование по частям

Этот метод основан на формуле $\int u dv = uv - \int v du$.

Методом интегрирования по частям берут такие интегралы:

- a) $\int x^n \sin x dx$, где n = 1, 2...k;
- б) $\int x^n e^x dx$, где n = 1, 2...k;
- в) $\int x^n arctgx dx$, где $n = 0, \pm 1, \pm 2, \dots \pm k$.;
- г) $\int x^n \ln x dx$, где $n = 0, \pm 1, \pm 2, ... \pm k$.

При вычислении интегралов а) и б) вводят

обозначения: $x^n = u$, тогда $du = nx^{n-1}dx$, а, например $\sin x dx = dv$,тогда $v = -\cos x$.

При вычислении интегралов в), г) обозначают за u функцию arctgx, $\ln x$, а за dv берут $x^n dx$.

Вспомогательная таблица для интегрирования по частям

Подынтегральное	Обозначение	Обозначение	Сколько раз?
выражение udv	в качестве и	в качестве dv	
$P_n(x)e^x dx$	$P_n(x)$	$e^{x}dx$	n
$P_n(x) \ln x dx$	ln x	$P_{\kappa}(x)dx$	1
$P_n(x)\cos x dx$	$P_n(x)$	cos xdx	n
$P_n(x)\sin x dx$	$P_n(x)$	sin <i>xdx</i>	n
$P_n(x)$ arctgxdx	arctgx	$P_n(x)dx$	1
$e^x \cos x dx$	e ^x	cos xdx e* dx	2
$e^x \sin x dx$	e ^x sin x	sin xdx e*dx	2

<u>Примеры</u>

Пример. Вычислить $\int x \cos x dx$. Решение.

$$\int x\cos x dx = \begin{bmatrix} u = x, du = dx \\ dv = \cos x dx, v = \int \cos x dx \end{bmatrix}$$

 $= x \sin x - \int \sin x dx = x \sin x + \cos x + C.$

Пример. Вычислить

$$\int x \ln x dx = \begin{bmatrix} u = \ln x, du = \frac{dx}{x} \\ dv = x dx, v = \frac{x^2}{2} \end{bmatrix} = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{dx}{x} = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \ln x -$$

$$= \frac{x^2}{2} \ln x - \frac{1}{2} \int x dx = \frac{x^2}{2} \ln x - \frac{1}{2} \frac{x^2}{2} + C.$$