ФИЗИЧЕСКИЕ СВОЙСТВА

Лектор

доцент, к.ф.-м.н. Перминов А.С.,

Кафедра физического материаловедения

Лекция 1. час 1. Введение. Содержание курса.

1.1. Цель и задачи курса. Определение понятия "физические свойства". Программа курса, его связь с другими дисциплинами.

Цель и задачи курса

Цель курса:

Научить связывать физические свойства материалов с их структурой и фазовым состоянием.

Задачи курса:

- Объяснить принципы и механизмы формирования физических свойств материалов;
- Научить использовать физические свойства для анализа структуры, фазового состояния.

Распределение времени

Вид занятия	Часы
Общая трудоемкость	109
Аудиторные занятия	68
Лекции	34
Лабораторные занятия	34
Самостоятельная работа	41
Семестровый контроль	ЭКЗАМЕН

РАСПРЕДЕЛЕНИЕ УЧЕБНОГО ВРЕМЕНИ

Лекции - 34 ч

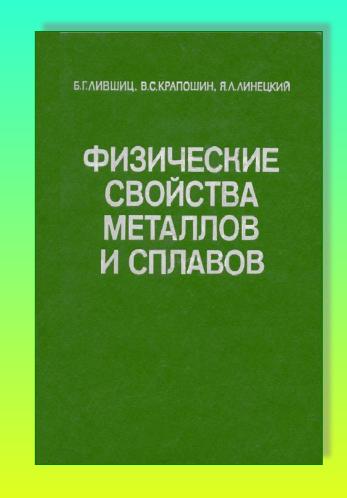
6 Лабораторных работ – 34 ч

Самостоятельная работа – 41 ч

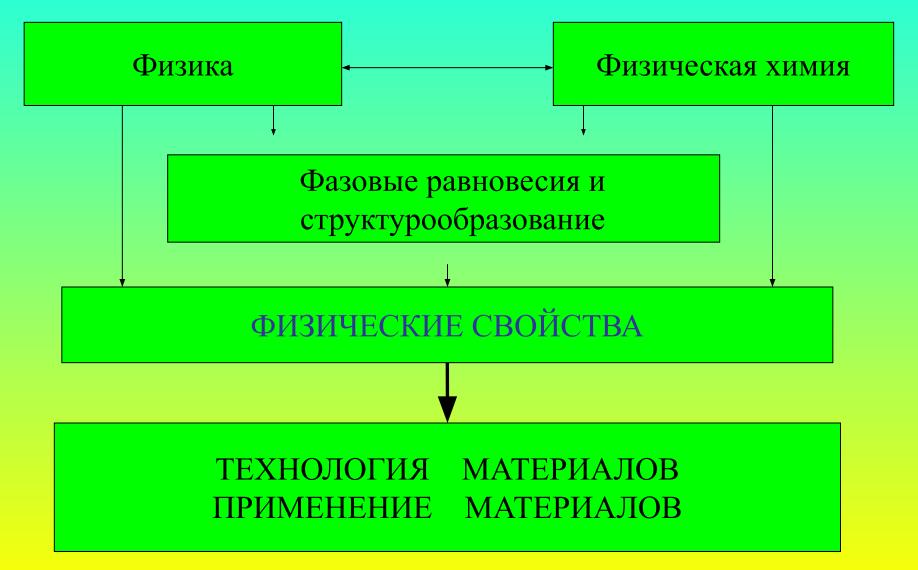
Домашние задания № 1-7

Коллоквиумы: № 1; № 2; № 3

Семестровый контроль – ЭКЗАМЕН


Программа курса

- Тема 1. Введение (1 час)
- Тема 2. Тепловые свойства (теплоемкость и энтальпия), термическое расширение, теплопроводность (15 часов)
- Тема 3. Электрические свойства (8 часов)
- Тема 4. Магнитные свойства (12 часов)

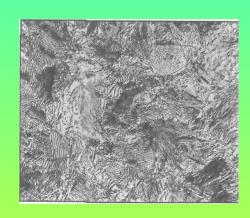

КР № 1 по введению и теме 2; КР № 2 по теме 3; КР № 3 по теме 4.

Литература

Лившиц Б.Г., Крапошин В.С., Линецкий Я.Л. Физические свойства металлов и сплавов. М.: Металлургия, 1980, 318 с.

Связь с другими дисциплинами

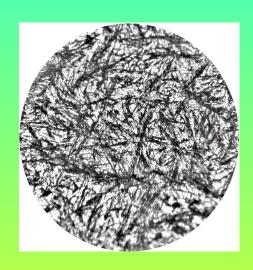
Классификация физических свойств


- по влиянию микроструктуры и дефектов кристаллической решетки:
 - 1. $cmpyкmypho-чувствительные свойства (<math>\rho$, λ , μ , H_c и др.) изменяются на десятки и сотни %;
 - 2. *структурно-нечувствительные свойства* (модули упругости, намагниченность насыщения и др.) изменяются очень слабо (< 1 %).
 - по виду физического эффекта (воздействия и отклика): тепловые, электрические, магнитные, упругие, оптические.

Влияние обработки на свойства стали У8

Отжиг

Сфероидизирующий отжиг


Закалка

B_s=2,1 Тл H_c=20 Э

 $B_s=2,1$ Тл $H_c=8$ Э $E_1=E_2$

 $B_s = 1.8 \text{ Тл}$ $H_c = 50 \text{ Э}$

Классификация по виду физического эффекта

• Физический эффект, «порождающий» физическое свойство, может быть охарактеризован путем описания воздействия на объект и возникающего в результате воздействия:

Воздействие → Объект → Отклик.

- В распространенном случае линейной связи между откликом и воздействием физическое свойство определяется как коэффициент пропорциональности между соответствующими физическими величинами.
- Примером может служить закон Ома:

$$j = \gamma E$$

где удельная электропроводность γ (физическое свойство) вводится как коэффициент пропорциональности между напряженностью электрического поля \boldsymbol{E} (воздействием) и плотностью электрического тока \boldsymbol{j} (откликом).

Основные физические свойства, определяемые линейными соотношениями

Физическое свойство	Воздействие	Отклик	Определяющее соотношение
Модуль Юнга <i>Е</i>	Растягивающее напряжение σ	Относительная деформация ε	Ε = σ/ε
Модуль всестороннего сжатия <i>К</i>	Давление <i>р</i>	Относительное изменение объема $\Delta V/V$	$K = -p/(\Delta V/V)$
Теплоемкость <i>С</i>	изменение температуры Δ <i>T</i>	Количество тепла ΔQ	$C = \Delta Q / \Delta T$
Темп. коэффициент линейного расширения α	изменение температуры <i>ΔТ</i>	Относительное изменение длины $\Delta \ell / \ell$	$\alpha = (\Delta \ell / \ell) / \Delta T$
Удельная теплопроводность λ	Градиент температуры <i>▽Т</i>	Плотность потока тепла <i>q</i>	$\lambda = -q / \nabla T$
Удельная электропроводность ү	Напряженность электрического поля <i>Е</i>	Плотность электрического тока <i>ј</i>	γ = <i>E / j</i>
Магнитная восприимчивость Х	Напряженность магнитного поля <i>Н</i>	Намагниченность <i>М</i>	χ = <i>M/H</i>

Комментарии

- Различие между воздействием и откликом иногда довольно условно. Под воздействием понимают физическую величину, значение которой экспериментатор в определенных пределах может изменять произвольно. Однако в случае теплоемкости, например, можно передавать телу определенное количество тепла и измерять в качестве отклика изменение температуры. Можно поступать и наоборот. Тем самым, что выбирается в качестве воздействия, а что – в качестве отклика, выбирается произвольно.
- Для того чтобы физическое свойство характеризовало именно материал, а не конкретный образец, это свойство должно быть интенсивной величиной. Интенсивная величина не зависит от размеров образца и количества вещества в нем в противоположность экстенсивной величине. Для выполнения указанного требования в соотношении, определяющем физическое свойство, надо использовать воздействие и отклик, представленные в виде интенсивных величин. В случае теплоемкости это осуществляют, переходя от теплоемкости тела к удельной теплоемкости (в расчете на единицу массы) или к молярной теплоемкости. При изучении термического расширения такой переход производят заменой абсолютного удлинения образца при нагреве на относительное удлинение (абсолютное удлинение делят на начальную длину). В случае определения удельного сопротивления р (обратной величины удельной электропроводности γ) вместо обычного закона Ома U = IR (U – напряжение, I – сила тока, R – сопротивление) следует использовать закон Ома в дифференциальной форме. Для этого разность потенциалов U, зависящую от расстояния между точками I, где измеряются потенциалы, делят на это расстояние и получают напряженность электрического поля E = U/I. От силы тока переходят к его плотности путем деления на площадь поперечного сечения образца (j = I / S). В результате от величины электрического сопротивления R, зависящей от размеров образца, переходят к удельному электрическому сопротивлению $\rho = RS/I$, которое характеризует не образец, а материал. При этом закон Ома приобретает вид равенства $E = \rho j$, которое справедливо для любой точки внутри образца.
- Линейные определяющие соотношения описывают самые важные изучаемые в материаловедении физические свойства.
- Существуют физические свойства, описывающие отклик материала при приложении к нему не одного воздействия, а двух. В качестве примера можно привести эффект Холла возникновение электродвижущей силы в образце, через который пропускают электрический ток и одновременно прикладывают магнитное поле. Физическим свойством материала, порожденным этим эффектом, является постоянная Холла $R_{\rm H}$ коэффициент пропорциональности между напряженностью возникающего дополнительного электрического поля $E_{\rm H}$, с одной стороны, и векторным произведением индукции магнитного поля B и плотностью электрического тока J, с другой стороны:

$$E_{H} = R_{H} B \times j$$

Некоторые особенности физических свойств наноматериалов.

В наноструктурных материалах часто изменяются фундаментальные характеристики, такие как Точка Кюри, температура перехода в сверхпроводящее состояние, намагниченность насыщения.

Наноразмеры таких материалов влияют как на структурно-чувствительные, так и на структурно-нечувствительные свойства, поскольку при сверхмалых размеров частиц поликристалла включаются некоторые квантовые эффекты, которые не проявляются в массивных образцах.

Особую роль играют поверхностные эффекты.

Лекция 2. час 2. Тема 1. Тепловые свойства.

1. Общие понятия и определения (энтальпия, виды теплоемкости и связь между ними, эндо- и экзотермические реакции). Средняя энергия классического осциллятора. Закон Дюлонга и Пти. Источники тепловых свойств металлов и сплавов.

Энтальния – функция состояния, определяемая соотношением: H=U+PV

$$H=U+PV$$

При изобарическом процессе P=const: $\Delta H = \Delta U + P \Delta V \quad (A = P \Delta V)$ Первое правило термодинамики $\Delta U = Q - A$

$$\Delta H = Q = cmT$$

$$c = \frac{\mathrm{d}H}{\mathrm{d}T} \cdot \frac{1}{m} = \frac{\delta Q}{dT} \cdot \frac{1}{m}$$

Виды теплоемкости

Теплоемкость тела: $C = \delta Q/dT$ [Дж/K].

Удельная теплоемкость:

$$C_{yd} = C/m$$
 [Дж/кг·К].

Молярная теплоемкость:

$$C_{m} = C/(m/\mu) = C/(N/N_{A})$$
 [Дж/моль·К].

Объемная теплоемкость:

$$C_{\text{об}} = C/V [Дж/м3·K].$$

Теплоемкость в расчете на одну частицу:

$$C_{\text{част}} = C/N [Дж/К].$$

Теплоемкость для разных условий передачи тепла

Теплоемкость при постоянном объеме:

$$C_V = (\partial U/\partial T)_{V=const}$$

Теплоемкость при постоянном давлении:

 $C_p = (\partial H/\partial T)_{P=const}$. не поддерживать определенное условие передачи тепла, то теплоемкость не будет характеризовать свойства тела (не будет функцией состояния).

Всегда $C_p > C_V$ (тепло расходуется не только на повышение внутренней энергии, но и на совершение работы против внешнего давления)

Различие теплоемкостей

$$C_p - C_V = \frac{\alpha_V^2 V}{\beta} T,$$

$$\alpha_V = \frac{dV}{dT} \cdot \frac{1}{V_T}$$

- Объемный коэффициент термического расширения

$$\beta = -\frac{dV}{dP} \cdot \frac{1}{V_P}$$

Коэффициент всестороннего сжатия (сжимаемость)

Формула Нернста-Линдемана

$$C_p - C_V = aC_P^2 T$$

Причем $a \neq f(T)$

Для металлов ΔС очень мала:

$$C_P \approx C_V \cdot (1+10^{-4}T)$$
, HO

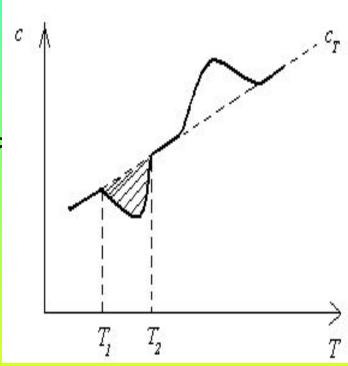
Для Мо - при 2000 К $\Delta C/C_P$ ≈ 10%

Вывод: разница увеличивается с ростом температуры

Количество теплоты, выделяемое при реакции называется

тепловым эффектом.

Различают два типа тепловых эффектов.


Реакции, протекающие с выделением энергии (Δc<0), называют

экзотермическими.

Реакции, при которых энергия поглощается($\Delta c > 0$), называют

эндотермическими.

$$Q = \int_{T_1}^{T_2} (c_{_{\mathfrak{SKCNepumehm}}} - c_T) dT$$

Составляющие теплоемкости

$$C_{
m p} = C_{
m peшетки} + C_{
m эл} = \\ = C_{
m идеальной решетки} + C_{
m дефект} + C_{
m эл} + C_{
m ahr} + C_{
m дефект} + C_{
m эл},$$
где

- С_{решетки} решеточная теплоемкость (колебаний ионов в узлах кристаллической решетки),
- С_{эл} электронная теплоемкость (вклад коллективизированных электронов),
- С_{дефект} вклад дефектов кристаллической решетки (часто определяется в основном вакансионной составляющей).

Универсальная кривая теплоемкости твердых тел

Решеточная теплоемкость 1 классическое приближение

Средняя энергия классического $\frac{}{\varepsilon} = \frac{kT}{2}$ осциллятора на 1 степень свободы:

на 3 степени свободы:

 $\frac{-}{\varepsilon} = \frac{3kT}{2}$

Тепловая энергия – это средняя кинетическая энергия всех частиц, на 1 моль вещества

Для классического осциллятора $E_{\kappa} = E_{\Pi}$:

$$\overline{\varepsilon} = \frac{3}{2}kTN_A = \frac{3}{2}RT \Rightarrow c_m = \frac{3}{2}R = const$$

Недостатки: 1) Вдвое меньше, чем при эксперименте (при 300 К около 3*R*);

2) Нет температурной зависимости

Решеточная теплоемкость 2 классическое приближение

Всего 6 степеней свободы -

- 3 поступательное движение
- 3 колебательное движение

$$\frac{-}{\varepsilon} = \frac{3kT}{2} \cdot 2 \Longrightarrow c_m = 3R$$

- закон Дюлонга и Пти, т.е. 6 кал/(моль К) Реально для металлов

С≈5,7-6,2 кал/(моль К) при 300 К

Недостатки - нет 1) Температурной зависимости

2) Совпадения с низкими и высокими температурами

Лекция 2.

2. Теории теплоемкости Эйнштейна и Дебая. Дебаевская температура как характеристика сил связи между атомами и её связь с другими свойствами материалов. Ангармонизм колебаний атомов и его влияние на теплоемкость.

Теория теплоемкости Эйнштейна

Предположения:

1. Твердое тело – совокупность атомов, которые колеблются независимо друг от друга, <u>гармонически</u>, <u>с одинаковой</u> частотой

$$\omega = (f/M)^{1/2},$$

где $f = \varphi''(r_0)$, M – масса атома.

2. Выполняется правило Планка (квантования энергии осциллятора):

$$\varepsilon_{\rm n} = \hbar \omega \, (n + 1/2), \, {\rm n} = 0, 1, 2, ...$$

Результат:

$$\overline{\overline{\epsilon}} = \frac{ \mathbb{M} \omega}{exp\!\!\left(rac{\mathbb{M} \omega}{kT}
ight) - 1}$$

$$C_V = 3R \cdot \left(\frac{\boxtimes \omega}{kT}\right)^2 \cdot \frac{e^{\frac{\boxtimes \omega}{kT}}}{\left(e^{\frac{\boxtimes \omega}{kT}} - 1\right)^2}$$

Достоинства и недостатки теории Эйнштейна

Достоинства

Качественно верно описывает зависимость $C_{_{\mathrm{V}}}(T)$ и ее связь с жесткостью межатомных связей.

Правильно предсказывает предельные значения C_v (0 при T = 0 K и 3R при T>> $\hbar\omega/k$).

Недостатки

- предсказывает экспоненциальное увеличение С_у при низких температурах вместо наблюдающегося закона Т³;
- завышает значения С, при низких температурах.

Основная причина расхождений:

неучет связанного характера колебаний атомов (существования спектра колебаний вместо одной частоты).

Теория теплоемкости Дебая

Основные положения:

- 1. При нагреве возникают связанные (коллективные) колебания атомов. Распространение колебаний в кристаллической решетке представляет собой упругие волны, движущиеся со скоростью звука v_{3R} и волновым вектором k.
- 2. Колебание отдельного атома можно разложить на независимые гармоники т.н. **нормальные колебания**, каждое из которых имеет свою частоту ω.
- 3. Дисперсия в среде отсутствует, т.е. $v_{_{3B}}$ не зависит от частоты, что соответствует линейному закону дисперсии: $\omega(k) = v_{_{3B}}k$.
- 4. Среда упруго изотропная, т.е. V_{3R} не зависит от направления.
- 5. Общее число нормальных колебаний Z = 3N, где N число атомов.
- 6. Энергия нормальных колебаний квантуется:

$$\varepsilon_{ni} = \hbar \omega_i (n + 1/2).$$

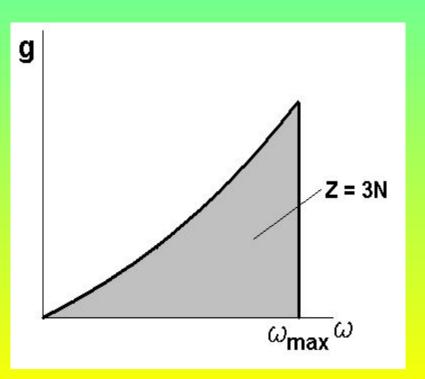
Спектр колебаний решетки по Дебаю

характеризуется функцией

$$g(\omega) = dZ/d\omega$$

 плотностью распределения числа нормальных колебаний по частотам.

В теории Дебая


$$g(\omega) = 3V\omega^2/2\pi^2v_{_{3B}}^{_{3B}}$$
.

Конечность числа нормальных колебаний (Z = 3N) заставила ввести максимальную частоту колебаний (дебаевскую частоту) ω :

$$\omega_{\text{max}}$$
:
$$_{0}^{\int \omega_{\text{max}}} g(\omega) d\omega = 3N,$$

откуда

$$\omega_{\text{max}} = (6 \, \pi^2 \text{N/V})^{1/3} \text{V}_{_{3B}}.$$

Расчет теплоемкости по Дебаю

$$C_V = \partial U/\partial T = \partial/\partial T_0 \int_{\omega}^{\omega} (\omega) d\omega$$

$$C_V = 9R (T/\theta)^3 \int_0^{\theta/T} x^4 e^x (e^x - 1)^{-2} dx,$$
 где $\theta = \hbar \omega_{max}/k$ – температура Дебая, $x = \hbar \omega/kT$.

Предельные случаи:

низкие температуры, T << θ,

$$C_V = (12\pi^4/5)R (T/\theta)^3 \approx 234 R (T/\theta)^3 -$$
закон T^3 Дебая;

2. высокие температуры, $T >> \theta$,

$$C_V = 3R \approx 25 \, Дж/моль·К – закон Дюлонга-Пти.$$

Температура Дебая

$$\theta = \hbar \omega_{\text{max}} / k = (6 \pi^2 / V_{\text{at}})^{1/3} V_{_{3B}}.$$

При T > θ возбуждены все частоты нормальных колебаний, и повышение энергии колебаний при нагреве осуществляется за счет увеличения амплитуды. При T< θ в процессе охлаждения часть нормальных колебаний начинает «вымерзать».

$$\theta = (6 \pi^2/V_{aT})^{1/3} V_{3B} \sim (D/M \cdot V_{aT}^{2/3})^{1/2}.$$

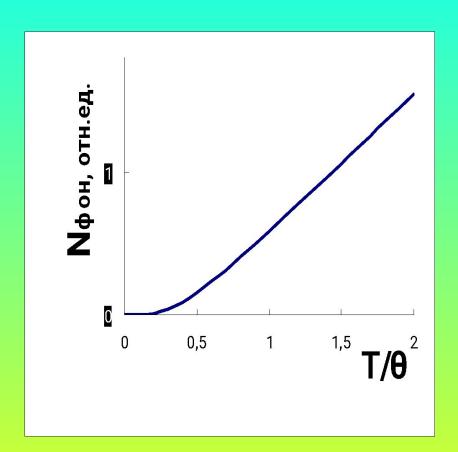
Высокая θ – у материалов с высокой энергией связи и малой массой атомов.

Формула Линдемана

$$\theta$$
 = a $(T_{пл}/M \cdot V_{aT}^{2/3})^{1/2}$, где a = 137 (а.е.м.)^{1/2} К^{1/2} Å.

Фононы

Любую волну можно представить, как квазичастицу.


фонон – квазичастица, описывающая нормальные колебания кристаллической решетки.

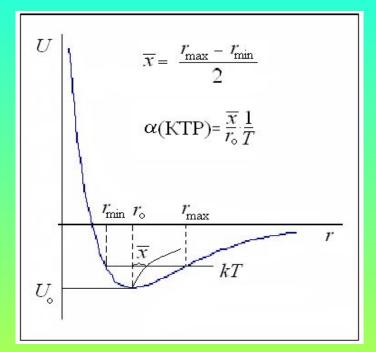
Энергия фонона $\varepsilon_{\text{фон}} = \hbar \omega$, скорость фонона — скорость звука, импульс фонона $p = \hbar k = \varepsilon_{\text{фон}}/v_{_{3B}}$.

Теплоемкость решетки тождественна фононной теплоемкости.

Фонон является квантовой частицей и даже при T=О К в веществе имеется энергия нулевых колебаний не равная нулю: ε_0 =($\hbar\omega/2$).

Число фононов


```
Число фононов n = 1/[exp(1/x)-1], где x = \hbar \omega/kT.
```


Общее число фононов
$$N_{\phi o H} = \int_{0}^{\omega max} \langle n(\omega) \rangle g(\omega) d\omega$$
.

при T >>
$$\theta$$
 N_{фон} ~ T/θ , при T << θ N_{фон} ~ $(T/\theta)^3$.

Рост числа фононов с температурой отражает рост амплитуды колебаний атомов.

Ангармонизм колебаний атомов

Между коэффициентом термического расширения α и теплоемкостью c_p существует термодинамическая связь $\alpha \approx Ac_p$

На фононном языке явление ангармонизма можно трактовать, как взаимодействие фононов

Влияние ангармонизма колебаний атомов на теплоемкость

Решеточная теплоемкость с учетом ангармонизма равна: 15 -2

ангармонизма равна:
$$c_{peuu} = 3R + \frac{15}{8} \frac{g^2}{f^3} kT$$

Здесь : *g* – коэффициент ангармонизма; *f* – квазиупругий коэффициент, характеризующий уровень сил связи в решетке.

Из этой формулы следует, что ангармонизм обуславливает линейную зависимость $C_{\mathrm{peш}}$ от температуры T

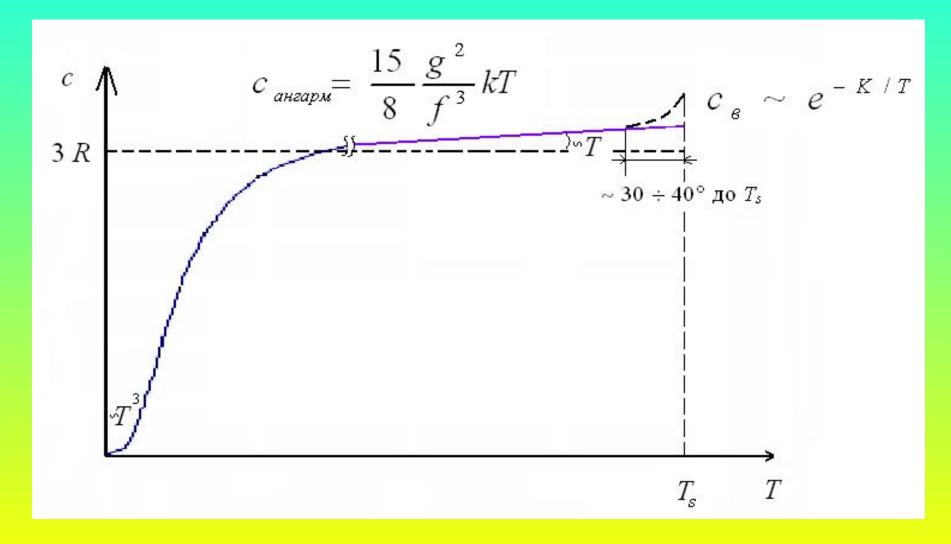
Вакансионный вклад в теплоемкость

Равновесная концентрация вакансий:

$$n_{e} = \frac{N_{e}}{N_{a}} = e^{\frac{S_{o}}{k} - \frac{U_{o}}{kT}}$$

Появление вакансий приводит к росту энтальпии

$$\Delta H = n_e \cdot N_A \cdot U_o$$


Вакансионный вклад в теплоемкость

$$c_{e} = \frac{dH_{e}}{dT} = A \frac{U_{o}^{2}}{kT^{2}} \cdot e^{-U_{o}/kT}$$

Таким образом в районе точки плавления:

$$c_{\scriptscriptstyle 6} \sim e^{-K/T}$$

Температурная зависимость решеточной теплоемкости

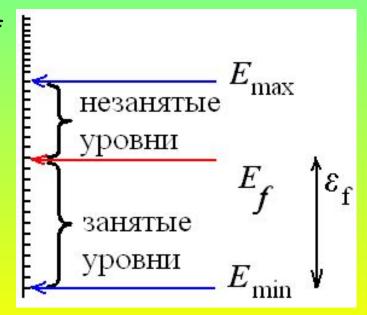
Заключение

- Теплоемкость «скачет» существует вклад, зависящий от положения в таблице
 Менделеева
- При высоких температурах реальная завимость C(T) выше, т.е. есть еще составляющая теплоемкости~T
- Нет совпадения при *T* менее 3-4 К, где *C~T*
- В ферромагнетиках при T менее 2 К $C \sim T^{3/2}$

Лекция 3. 1 час. Электронная составляющая теплоемкости

3.1 Электронная составляющая теплоемкости простых и переходных металлов. Общие закономерности теплоемкости металлов: теплоемкость при низких и высоких температурах, зависимость от положения в таблице Менделеева, влияние ферромагнетизма.

энергия Ферми


 Рассмотрим энергетический спектр одновалентного металла – в его зоне Nуровней, но занято N/2

• Значение энергии на верхнем занятом уровне

называют энергией Ферми E_{f}

• Выделяют кинетическую энергию Ферми $\varepsilon_f = E_f - E_{min}$


Для большинства металлов
 ε_f ≈ 5 ÷ 10 эВ

Функция плотности электронных состояний

Функция плотности электронных состояний отражает число уровней в интервале энергий от ε до ε+Δε

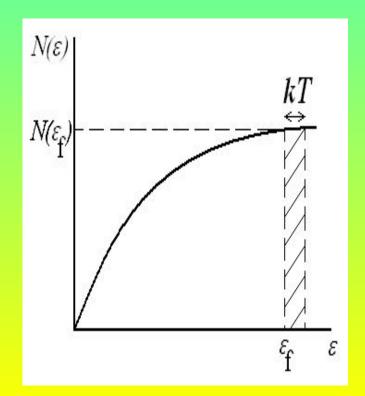
$$N(\varepsilon) = \frac{dN}{d\varepsilon}$$

- Плотность электронных состояний на уровне Ферми $N(\varepsilon \varphi)$ ин из важнейших параметров металлов
- Из статистики Ферми-Дирака для вырожденного газа:

$$N(\varepsilon_{\rm f}) = \frac{3}{2} \cdot \frac{N}{\varepsilon_{\rm f}}$$

$$\varepsilon_{\rm f} \sim N^{2/3}$$

Электронная составляющая теплоемкости


- Под действием тепловых флуктуаций kT часть электронов может перейти на незанятые уровни с $\epsilon > \epsilon_{\rm f}$
- Энергия системы при температуре Т≠0 К

$$E_T = E_{T=0K} + \Delta E$$

$$\Delta E = \frac{3}{2}kT \cdot N_{\text{возбужед}} = \frac{3}{2}kT \cdot \{kT \cdot N(\varepsilon_{\rm f})\}$$

где 3kT/2 – энергия на 1 частицу:

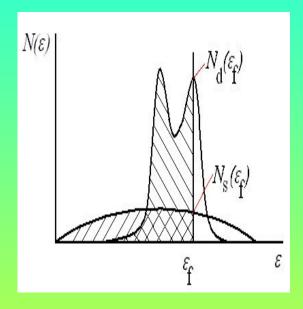
$$C_{3\pi} = \frac{dE}{dT} = 3k^2 N(\varepsilon_{\rm f}) \cdot T \sim \gamma T$$

Анализ электронной составляющей теплоемкости простых металлов

$$C_{\mathfrak{I}} = \frac{dE}{dT} = 3k^2 N(\varepsilon_{\mathrm{f}}) \cdot T \sim \gamma T$$

Учет неидеальности, не одновалентности и квантовой статистики

Оценка С_{эл} при комнатной температуре

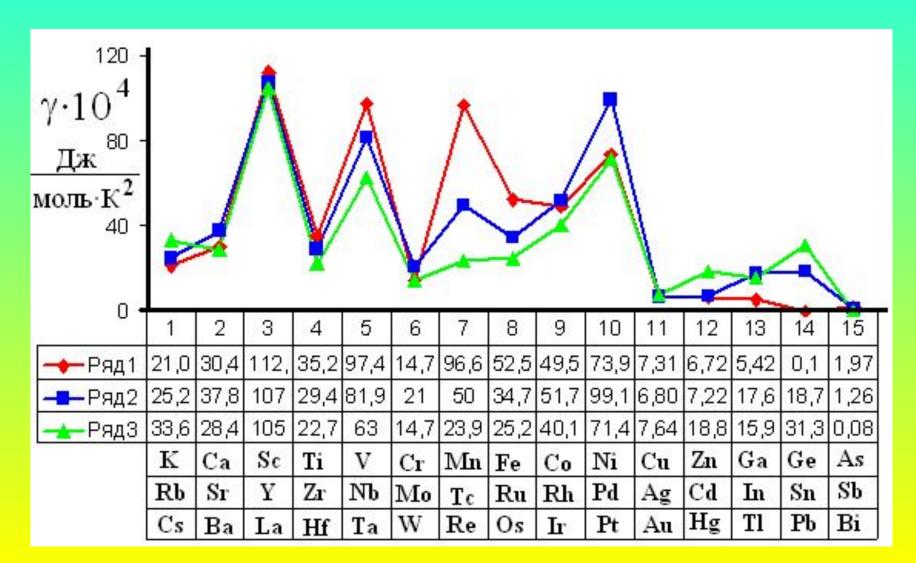

$$C_{\mathfrak{I}} = 3k^2 N(\varepsilon_{\mathrm{f}}) = \frac{3}{2}R \cdot \frac{3kT}{\varepsilon_{\mathrm{f}}} = \frac{3}{2}R \frac{3T}{T_{\mathrm{f}}} \approx 10^{-2} C_{\mathrm{Def}}$$

$$N(\varepsilon_{\mathrm{f}}) = \frac{3}{2} \cdot \frac{N}{\varepsilon_{\mathrm{f}}}$$
 $\varepsilon_{\mathrm{f}} = kT_{\mathrm{f}}$ Для металлов $T_{\mathrm{f}} = 10^4 - 10^5~K$

Электронная составляющая С_{эл} переходных металлов

металл	Ag	Al	Fe	Со	Ni	Pt	Mn
ү · 10 ⁴ , кал/(моль·К ²)	,	3, 4	12	12	17	16,7	35- 40

Вывод – у переходных металлов электронная составляющая теплоемкости на порядок выше, чем у простых



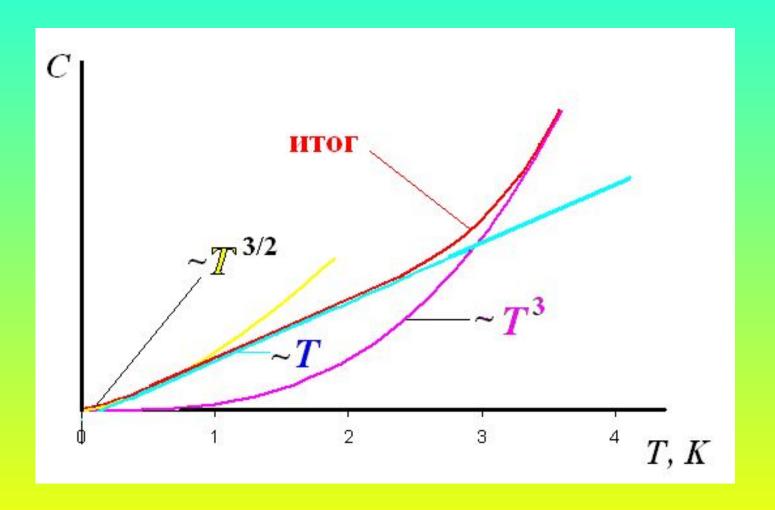
Причина – наличие d-электронов, которые дают свой вклад в плотность электронных состояний

$$C_{\scriptscriptstyle \mathfrak{I}} \sim \left\{ N_{\scriptscriptstyle S}(\varepsilon_{\scriptscriptstyle \mathrm{f}}) + N_{\scriptscriptstyle d}(\varepsilon_{\scriptscriptstyle \mathrm{f}}) \right\}$$

$$C_{\rm Эл}^{\it nepexodныe} \approx 10^{-1} C_{\it Деб}$$

Зависимость С_{эл} от положения в таблице Менделеева

Магноны и их влияние на теплоемкость


• Магнон – квазичастица, описывающая магнитное возмущение спиновой системы

```
↑↑↑↑↑↑↑ - Ферромагнетик при T=0 К
↑↓↑↑↑↑↑ - с ростом температуры идет рост числа
↑↓↑↓↓↑↑↑ опрокинутых спинов, т.е. рост числа магнонов
```

Магноны увеличивают внутреннюю энергию системы и вносят вклад в теплоемкость

$$C_{\text{магнонная}} \sim \zeta \cdot T^{\frac{3}{2}}$$
 Коэффициент **ζ** мал, поэтому роль магнонов проявляется только при $T{
ightarrow}0$ К.

Температурная зависимость теплоемкости ферромагнетика вблизи 0 К

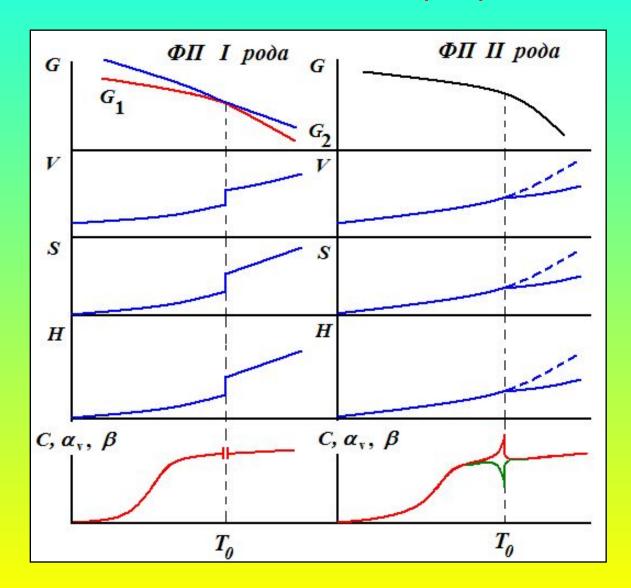
Лекция 3. Час 2

Поведение теплоемкости при фазовых переходах.

Связь теплоемкости с функциями термодинамического состояния и энергией Гиббса

- Фазовые переходы бывают 1 и 2 рода
- Отличие разное изменение функций термодинамического состояния (ФТДС) свободного объема V, энтропии S, энтальпии H
- Следствие изменение первых производных от ФТДС тоже разное

$$dS = \frac{dH}{T}; \quad dH = CdT \quad \Rightarrow C = \frac{dS}{dT} \cdot \frac{1}{T} \quad S = -\left(-\frac{\partial G}{\partial T}\right)_{P} \quad \Rightarrow \quad C = -T\frac{\partial^{2} G}{\partial T^{2}}$$

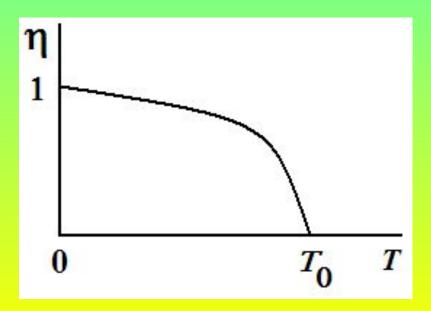

$$V = \left(\frac{\partial G}{\partial P}\right)_T$$
 \Rightarrow $\alpha_V = \frac{1}{V} \frac{\partial^2 G}{\partial T \cdot \partial P}$ и $\beta = -\frac{1}{V} \frac{\partial^2 G}{\partial P^2}$

Вывод: С, α_{V} , β - первые производные ФТДС и вторые производные энергии Гиббса

Особенности ФП 1 и 2 рода

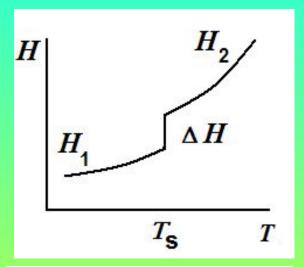
ФП 1 рода – это такие переходы, которые подчиняются правилу фаз Гиббса – С=К-Ф+1 и	ФП 2 рода не подчиняются правилу фаз Гиббса
В точке перехода в равновесии 2 фазы с равными G_1 = G_2 ;	В точке перехода 1 фаза
Между фазами существует граница раздела;	Границы раздела нет
ФТДС изменяются скачком;	Скачка нет – перегиб на кривых
Есть теплота превращения ΔН≠0;	В точке перехода теплоты фазового перехода <u>нет</u>
Температурный гистерезис превращения;	Нет температурного гистерезиса
С, α _V , β - в точке ФП разрыв.	C , α_{V} , β - в точке ФП скачок.

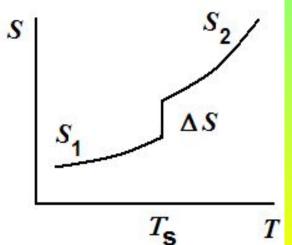
Поведение функции термодинамического состояния и теплоемкости при фазовых переходах



При ФП II рода на *C(T)* наблюдается λ-особенность

$$\alpha_V \sim -\beta$$
 $C \sim \pm \alpha_V$

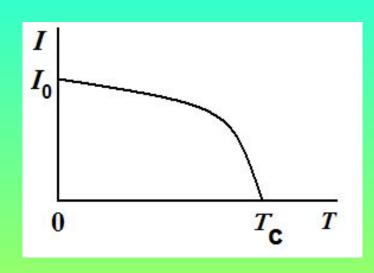

Степень симметрии при фазовом переходе второго рода

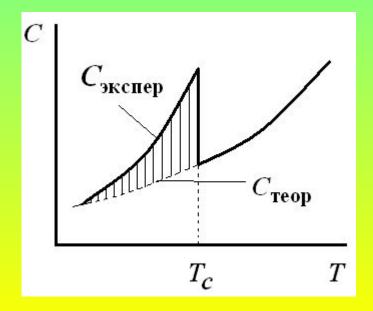

- Фазовые переходы II рода обусловлены изменением атомно-электронной (спиновой) системы данной фазы.
- Степень симметрии характеризуют параметром упорядоченности η

 При разных фазовых переходах II рода параметр упорядоченности п имеет различный физический смысл

Примеры влияния ФП на теплоемкость. 1. Плавление металлов (ФП I рода)

$$\Delta S = S_2 - S_1 = \int \frac{dH}{T_s} dT = \frac{\Delta H}{T_s} = \frac{q_s}{T_s}$$


Для большинства металлов ΔS \approx 1,5÷2,5 кал/(моль:К) Исключение — металлы со сложной слоистой структурой, в которой сильно выражена ковалентная связь. При плавлении связь становится металлической, т.е. ослабляется


Металл	Bi	Sb	Sn
ΔS , кал/(моль·К)	4,4	5,7	3,4

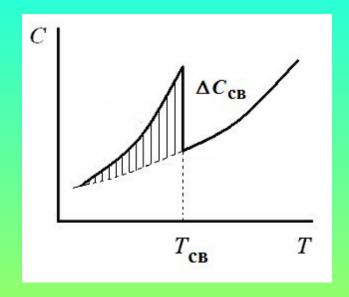
Магнитные превращения

Переходы - ФМ↔ПМ; АФМ ↔ПМ; ФМ ↔АФМ

При магнитном превращении происходит изменение степени упорядоченности спиновой системы. В качестве параметра упорядоченности выступает намагниченность I.

В точке перехода на C(T) наблюдается λ -особенность.

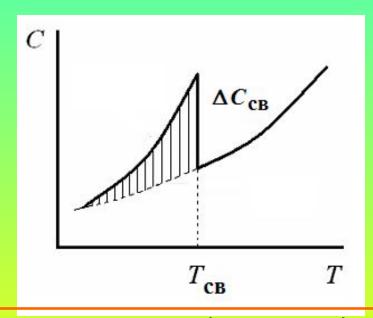
$$C_{\text{\tiny MAZH}} \sim \lg(1 - \frac{T}{T_c})$$

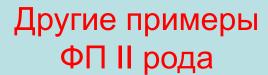

Исключения

В некоторых металлах при магнитных переходах происходит резкое изменение самопроизвольной магнитострикции (резко увеличивается объем, а кристаллическая структура металла не меняется). Из-за этого на зависимости C(T) эти фазовые переходы проявляются как фазовые переходы первого рода (наблюдается разрыв), и таковыми их и считают.

Металл	Температура, К	Тип перехода
Dy	85	ФМ↔АФМ
Cr	295	АФМ↔ПМ
Er	95	АФМ↔ПМ

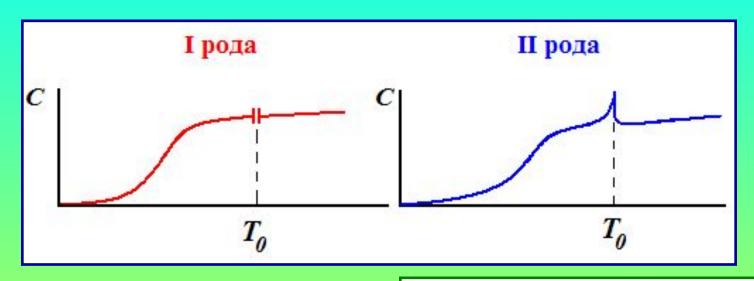
Переход в сверхпроводящее состояние – ФП II рода

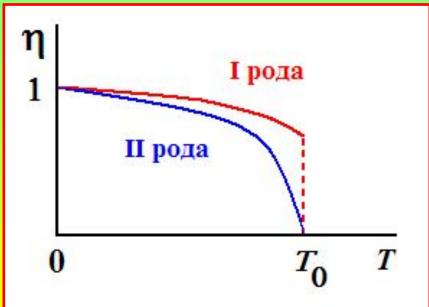

- При высоких температурах изза сильного колебания иона решетки влияние электрона не велико, но с понижением температуры влияние усиливается.
- Один электрон влияет на ион, а тот опосредовано влияет на другой электрон. Образуется куперовская пара
- Физический смысл параметра упорядоченности η концентрация куперовских пар

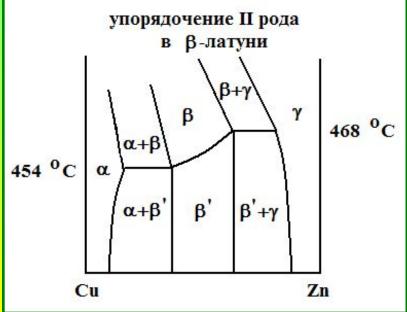

$$\Delta C_{\rm cb} \sim \left(\frac{T}{T_{\rm cb}}\right)^3$$

Переход в сверхтекучее состояние – ФП II рода

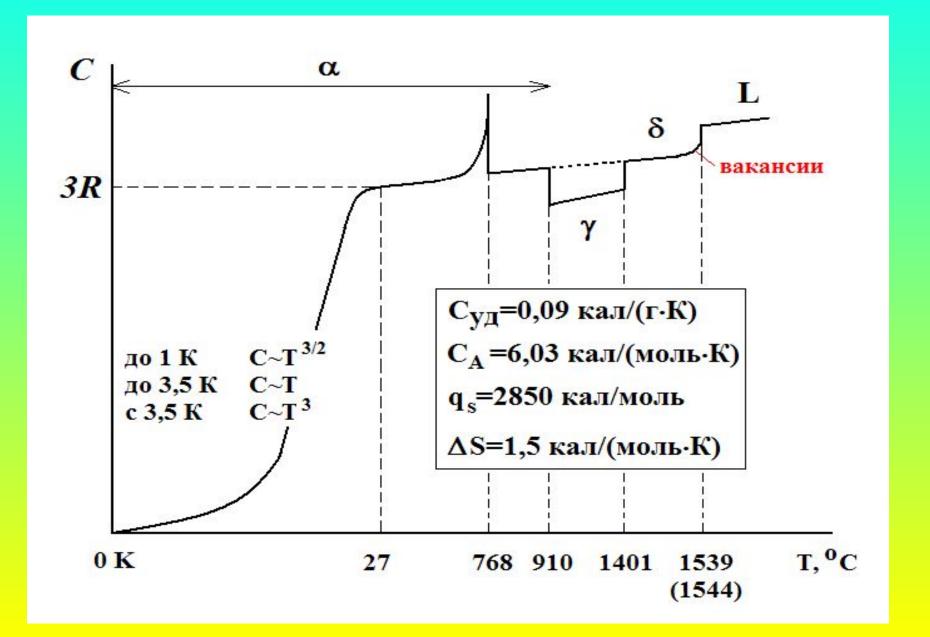
Гелий — квантовая жидкость с огромными нулевыми колебаниями, амплитуда которых при приближении к 0 К сравнима с размером атома. «Заморозить» гелий можно только под давлением P=26 атм




$$\Delta C_{_{\mathrm{CB}}} \sim \lg \left(1 - \frac{T}{T_{_{\mathrm{CB}}}}\right)$$



- 1. Образование экситонных пар (пар дырка-электрон)
- 2. Образование фаз спинового стекла


Упорядочение

Теплоемкость чистого железа

Лекция 4. час 1

Теплоемкость сплавов

- Все изложенные ранее закономерности выполняются и для сплавов.
- Имеющиеся отличия обусловлены тем, что при образовании фаз как постоянного (соединения), так и переменного (твердые растворы, промежуточные фазы) состава возможно значительное изменение уровня сил связи меняется функция распределения N(ε), концентрация электронного газа, электронная структура, иногда может измениться даже тип связи по сравнению с металлами компонентами.
- При $T \ll \Theta_{\pi} C = \gamma T + \alpha T^3$. При фазообразовании меняются и γ и α , но главным образом γ , т.к. связь в фазе осуществляется через электроны. Пример: чистый Ni $\gamma = 73.9 \cdot 10^{-4} \, \text{Дж/(моль·K}^2)$; $\alpha = 0.21 \cdot 10^{-4} \, \text{Дж/(моль·K}^4)$; Ni+1,5at%Cr $\Delta \gamma = 6.3 \cdot 10^{-4} \, \text{Дж/(моль·K}^2)$; $\Delta \alpha = 0.04 \cdot 10^{-4} \, \text{Дж/(моль·K}^4)$.
- Чем выше теплота образования соединения, тем сильнее меняется γ . При этом $\Delta \gamma$ наименьшая у твердых растворов, выше у фаз с ковалентной связью, а наибольшая у фаз с ионной связью. Усиление ковалентной и ионной связи в связи с уменьшением концентрации электронов N означает уменьшение γ

Расчет теплоемкости соединения

Для теплоемкости при T > θ справедливо правило аддитивности Неймана-Коппа :

$$C_m = x_1 C_{m1} + x_2 C_{m2}$$

где x_1 и x_2 — молярные доли компонентов в соединении или фаз в гетерогенном сплаве;

Пример:

$$C(Fe_3C)=3C(Fe)+1C(C)=3.6,03+1.7,2=25,3$$
 кал/(моль К)

Для теплоемкости интерметаллидов при T > 0 погрешность не более 6%

При T < θ наблюдаются значительные отступления от правила Неймана-Коппа из-за неаддитивности γ_{эл}.

Расчет теплоемкости гетерогенной системы

$$C_{\rm yd} = q_1 C_{\rm yd1} + q_2 C_{\rm yd2}$$

где q_1 и q_2 – массовые доли.

Пример: Латунь Л80 (80%Cu+20%Zn)

 $C_{VZ}(Cu) = 0,0909 \text{ кал/(моль-К)};$

 $C_{yd}(Zn)$ =0,0918 кал/(моль·К) C_{yd} (Л80)=0,8·0,0909+0,2·0,0918=0,0911 кал/(моль·К)

 C_{VZ} (эксперимент Л80)=0,0929 кал/(моль К)

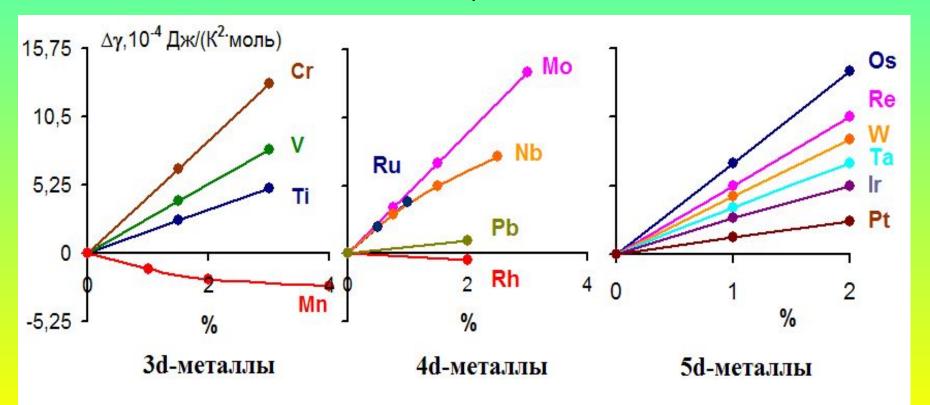
 Δ C=0,0018 кал/(моль·К) или Δ C/С _{уд} эксперимент≈2%

При T < θ наблюдаются значительные отступления от правила Неймана-Коппа из-за неаддитивности γ_{эл}.

Примеры расчета для У8

$$C_{y\partial} = \frac{dH}{dT} \cdot \frac{1}{m} = \frac{dH_1 + dH_2}{m_1 + m_2} \cdot \frac{1}{dT} = \frac{C_1 m_1 dT + C_2 m_2 dT}{(m_1 + m_2)dT} = \frac{m_1}{m_1 + m_2} C_1 + \frac{1}{m_1 + m_2} C_2 + \frac{1}{m_1 + m_2$$

	С _m , кал/(моль [.] К)	M
α-Fe	6,03	56
Fe ₃ C	25,3	180

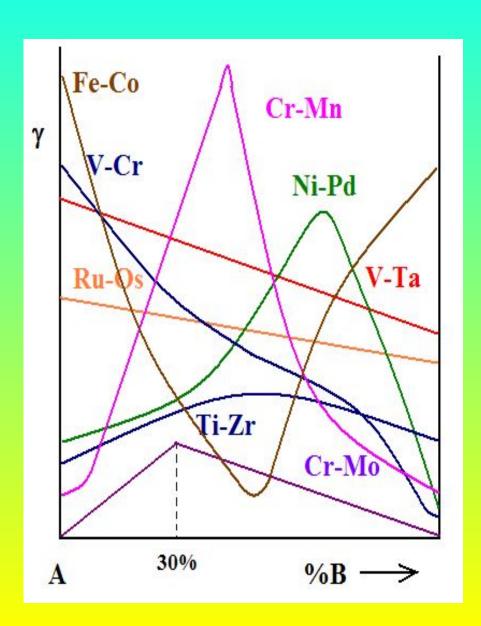

$$+\frac{m_2}{m_1+m_2}C_2 = p_1C_1 + p_2C_2$$

$$C_{y\partial} = \left[\frac{6,67 - 0,8}{6,67 - 0,006} \cdot \frac{6,03}{56} + \frac{0,8 - 0,006}{6,67 - 0,006} \cdot \frac{25,3}{180} \right] \cdot 4,18 \frac{\cancel{\square} 3c}{\kappa an} \approx 0,4663 \frac{\cancel{\square} 3c}{\epsilon \cdot K}$$

$$C_{yd}^{_{\mathfrak{I}\mathcal{K}}} = 0,4680 \frac{\mathcal{J}\mathfrak{I}\mathcal{K}}{\mathcal{E} \cdot \mathcal{K}}$$
 Ошибка $\frac{\Delta C}{C_{_{\mathfrak{I}\mathcal{K}}nep}} \cdot 100\% \approx 0,4\%$

Образование твердых растворов Ni

При малых концентрациях (слабые растворы) наблюдается линейная зависимость и правило Неймана-Коппа хорошо выполняется (кроме низких температур – квантовые эффекты, и высоких температур – электронная составляющая теплоемкости).



Электронная теплоемкость твердых растворов

При легировании изменяются *N* и *N*(ε), поэтому γ может как увеличиваться, так и уменьшаться.

Пример:

 $\gamma(Nb)=81,9\cdot10^{-4}\ Дж/(моль\cdot K^2)$ $\gamma(Sn)=18,7\cdot10^{-4}\ Дж/(моль\cdot K^2)$ $\gamma(Nb_3Sn)=546\cdot10^{-4}\ Дж/(моль\cdot K^2)$

Лекция 4. час 2.

2.4. Зависимость теплоемкости от размеров структурных составляющих материалов. Теплоемкость сплавов в кристаллическом, микрокристаллическом и нанокристаллическом состоянии. Тепловые свойства наноматериалов: теплоемкость ультрадисперсных материалов, изменение температуры Дебая в ультрадисперсных средах.

Теплоемкость наноматериалов

•Теплоемкость наноматериалов отличается от теплоемкости массивного материала такого же химического и фазового состава.

Причины:

роль поверхностных явлений роль квантовых эффектов

Влияние размера дисперсных частиц на спектр колебаний решетки

В ультрадисперсных системах могут возникать волны, длина которых не превышает удвоенного размера частицы d. В связи с этим кроме верхнего ограничения по частоте – дебаевской частотой ω_д – спектр частот ограничен и снизу – минимальной частотой ω_{min}~1/d

$$\int_{\omega_{\min}}^{\omega_{\pi}} g(\omega) d\omega = 3N$$

• Для малых частиц прямоугольной формы $g(\omega) = a_1 V \omega^2 + a_2 S \omega + a_3 L$

где V – объем, S – площадь, L – длина ребра частицы, a_1 , a_2 , a_3 - константы

Зависимость теплоемкости от параметров частиц

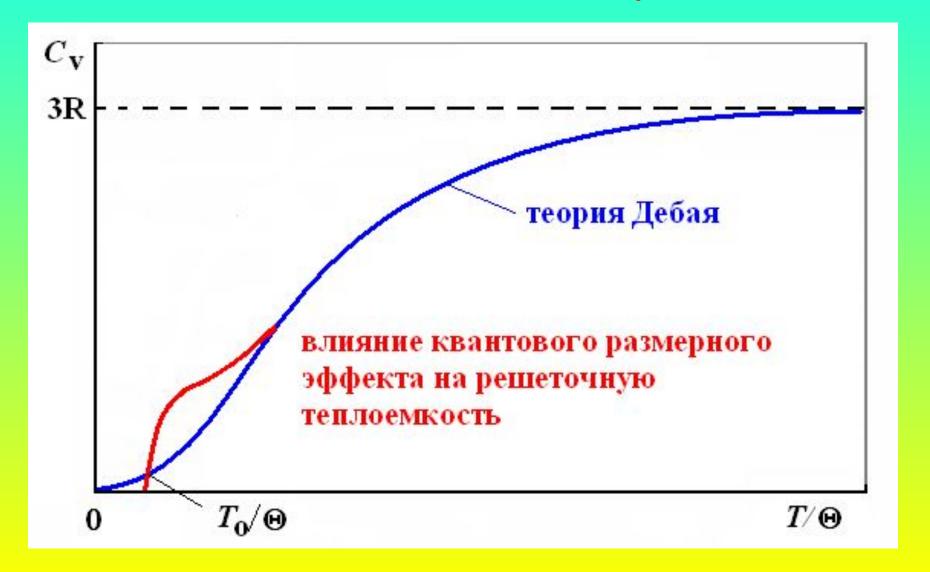
• Теплоемкость крупнокристаллического тела объемом V по Дебаю при $T << \theta$

$$C_V = bVT^3$$

• Теплоемкость дисперсных прямоугольных частиц

$$C_V(r) = b_1 V T^3 + b_2 S T^2 + b_3 L T$$

• Вывод – теплоемкость дисперсных частиц при $T << \theta$ выше теплоемкости массивного тела из-за вклада в теплоемкость поверхности частицы (параметры S и L).

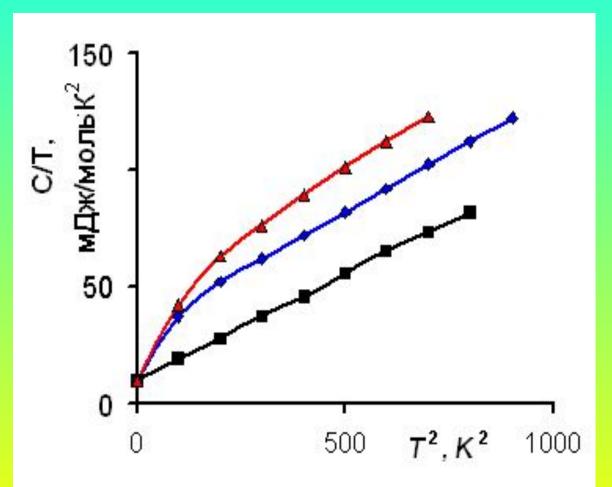

Квантовый подход к определению влияния размера частицы

• В квантовом приближении для сферической частицы радиусом *r* общее число колебаний

$$N = \frac{2}{9\pi} r^3 k_{_{\rm I\! I}}^3 + \frac{1}{4} r^2 k_{_{\rm I\! I}}^2 + \frac{2}{3\pi} r k_{_{\rm I\! I}}$$

- где $k_{\rm д}$ волновой вектор, соответствующий максимальной $C_{\scriptscriptstyle V}(r) = C_{\scriptscriptstyle V} + \frac{k_{\scriptscriptstyle 1} T^2}{r} + \frac{k_{\scriptscriptstyle 2} T}{r^2}$ частоте колебаний
- При росте частицы (r→∞) второй и третий члены (поверхностный и линейный вклады) обращаются в нули.
- При *T*→∞ теплоемкость наноматериала убывает быстрее, чем теплоемкость крупнокристаллического материала, поэтому Δ*C*=*C_V*(*r*)-*C_V*<0

Температурная зависимость теплоемкости наноматериалов



Экспериментальные данные

- Для наночастиц серебра Т_о≈0,7 К
- Теплоемкость наночастиц свинца (*d*=2,2 нм; 3,7 и 6,6 нм) и индия (*d*=2,2 нм) при *T*<10 К на 25-75 % больше теплоемкости крупнокристаллических металлов
- Для наночастиц Ni (*d*=22 нм) *C*_v(*r*)/*C*_v≈2 при 300-800 К
- Теплоемкость наночастиц меди в 1,2-2 раза выше до 450 К, чем для «массивной» меди. При T<20 К C(T)=aT+bT²+cT³

Материал	а, мДж/К ² моль	b, мДж/К³моль	С, мДж/К ⁴ моль
Массивный	0,68	0,01	0,051
Частицы, d=50 нм	1,3	0,32	0,066

Температурная зависимость теплоемкости Pd

- массивный Pd;
- ◆ частицыd=6,6 нм;
- ▲ частицыd=3,0 нм

Теплоемкость при постоянном давлении материалов в разном структурном состоянии

Материал	Размер	С _р , Дж/(К [.] моль)						
	нанозерен, нм	Нано-	Аморфный массивный	Кристаллический массивный				
Pd	6	37	27	25				
Cu	8	26	-	24				
Ru	15	28	-	23				
Ni ₈₀ P ₂₀	6	23,4	23,4	23,2				
Sc	10	24,5	24,7	24,1				

Влияние дисперсности материала на температуру Дебая

- Вывод: чем меньше размер частиц, тем больше их температура Дебая отличается от таковой для массивного материала.

Изменение относительной температуры Т_д/ О Дебая от размера частиц

Me	Ag	Al	Au		In	Pb			Pd		V			
d, нм	10 - 20	15 - 20	1,0	2,0	10	2,2	2,2	3,7	6,0	20	3,0	6,6	3,8	6,5
Т _д	0,75 - 0,83	0,50 - 0,67	0,69	0,92	0,995	0,8	0,87	0,90	0,92	0,94	0,89	0,89	0,83	0,89