- •
- •
- •
- •
- •
- •
- •
- •

- •

ВОЛОКОННЫЕ ЛАЗЕРЫ

Содержание лекции

- 1. Элементы волоконного лазера.
- 2. Активные добавки волоконных световодов.
- 3. Активные волоконные световоды.
- 4. Схемы накачки активных световодов.
- 5. Генерационные параметры иттербиевых волоконных световодов, легированных P_2O_5 и AI_2O_5 .

 \bullet

Элементы волоконного лазера

•

Активные добавки волоконных световодов

- Под активными понимают волоконные световоды, в состав материала которых входят ионы элементов, обладающих оптическими переходами.
- Применимость активного иона для легирования волоконных световодов на основе кварцевого стекла определяется следующими основным фактором:
- активный ион должен иметь излучательный переход в ближней ИК – области спектра, где кварцевое стекло наиболее прозрачно;

Редкоземельные элементы, используемые для создания активных волоконных световодов, и спектральные области их люминесценции.

Nd ³⁺ 0.92 - 0.94 , $1.05 - 1.1$, 1.34	
Yb ³⁺ 0.98 – 1.16	
Er ³⁺ 1.53 – 1.6	
Ho ³⁺ 1.9 – 2.1	
Tm ³⁺ 1.7 – 1.9	

Таблица №1.

Heodum (Nd +3)

Три основные полосы люминесценции расположены в области 0.92; 1.06 и 1.34 мкм.

Реализация волоконных лазеров с использованием перехода ${}^4\mathrm{F}_{3/2} \to {}^4\mathrm{I}_{9/2}$ (λ = 0,92 мкм) затруднена из – за конкуренции со стороны люминесценции в области 1,06 мкм.

Генерация на переходе ${}^4\mathrm{F}_{3/2} o {}^4\mathrm{I}_{13/2}$ (λ = 1,34 мкм) затруднена из – за поглощения из возбужденного состояния.

Создание эффективного волоконного лазера на длине волны 0,92 мкм связано с подавлением люминесценции на длине волны 1,06 мкм.

 \bullet

Иттербий **(Yb ⁺³)**

۲

Таблица 2. Положение подуровней Yb⁺³ в матрицах сердцевины волоконных AC и ФС световодов.

Noo	Под-	Энергия (см ⁻¹)		
уровень	уровень	ФС световод	АС световод	
² F _{7/2}	а	0	0	
	b	260	400	
	С	440	760	
	d	740	1210	
² F _{5/2}	e	10260	10245	
	f	10520	10917	
	g	10930	10940	

Спектр поглощения и люминесценции волоконных световодов, легированных ионами **Yb**⁺³

Эрбий **(Er ⁺³)**

Система уровней эрбия

⁴I_{9/2} ⁴I_{1/2} $I_{13/2}$ ⁴I_{1/2} ⁴I_{1/3/2}
⁴I_{1/2} ⁴I_{13/2}
⁴I_{13/2}
⁴I_{15/2} ($\lambda = 1.53 - 1.6$ мкм). ⁴I_{13/2} \rightarrow ⁴I_{15/2} ($\lambda = 1.53 - 1.6$ мкм). ⁴I_{13/2} \rightarrow ⁴I_{15/2} ($\lambda = 1.53 - 1.6$ мкм). ⁴I_{15/2} ⁵B на основектральный диапазон совпадает с ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световоды являются ⁴I_{15/2} ⁵B на основе кварцевого стекла, и поэтому такие световодов связаны с большим ⁴I_{15/2} ⁴B на основе кварцевого стекла, и поэтому такие световодов связаны с большим ⁴I_{15/2} ⁴B на основе кварцевого стекла, и поэтому такие световодов связаны с большим ⁴I_{15/2} ⁴B на основе кварцевого связаны с большим временем жизни на метастабильном уровне (около 10 мс).

• • • • • •

Гольмий **(Но ⁺³)** и тулий **(Тт ⁺³)**

- Время жизни на возбужденном уровне составляет около **0,5** мс. Существует интенсивная полоса поглощения в области **1.15** мкм.
- В качестве источника накачки в этом диапазоне используется иттербиевый волоконный лазер.

Спектральный диапазон возможной лазерной генерации (1850 – 2100 нм). Генерация получена на переходе ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$. Накачка осуществляется в полосу, обусловленную переходом на уровень ${}^{3}F_{4}$ (~ 790 нм), либо на уровень ${}^{3}H_{5}$.

۲

•

Активные волоконные световоды

Технологические процессы , используемые для производства активных волоконных световодов:

- MCVD (модифицированное химическое осаждение из газовой среды);
- OVD (внешнее осаждение из газовой среды);
- VAD (аксиальное осаждение из газовой среды);
- PCVD (осаждение с использованием плазмы).

Для введения активной примеси в этих процессах наибольшее распространение нашли метод пропитки, когда непроплавленный пористый материал сердцевины пропитывается раствором соли активной добавки, и легирование из летучих соединений.

MCVD – modified chemical vapor deposition – модифицированный метод химического осаждения из газовой фазы

 В этом методе добавляемая примесь SiO₂ отложена цилиндрическими слоями – начинается со слоя стекла для оболочки оптического световода и оканчивается слоем ядра волокна – на внутренней стороне вращающейся трубки, которая нагрета до 1600⁰С внешней горелкой.

 Поскольку каждый дискретный слой отложен друг на друга, то при нагревании они одновременно спекаются, чтобы сформироваться в твердое тело. Это происходит под действием горелки, путем перемещения её по трубе в направлении выброса газа, оплавляя слои кварца, отложенные перед

 \bullet

 \bullet

•

Модифицированный метод химического осаждения из газовой фазы

- В горячей зоне напротив горелки синтезируется оксид кремния.
 Образуются «пушинки» окиси, которые дрейфуют из горячей области в более холодную и прилипают к стенке. Этот процесс называется термофорезом.
- Важно, что осаждение происходит не в месте нагрева пламенем, а перед ним – там, куда пламя еще не дошло. На поверхности трубки образуется пористый слой окиси, и двигаясь дальше, горелка его проплавляет – остекловывает. Так получается слой чистого стекла.
- При следующих проходах через трубку пропускают ещё и германий в виде хлорида. Таким образом, легируют материал световода, создавая в нем градиент коэффициента преломления.
- После того, как необходимое число слоев осаждено, подачу хлоридов выключают, а температуру пламени увеличивают – в результате трубка плавится и схлопывается просто под действием

Модифицированный метод химического осаждения из газовой фазы

- Размеры заготовок, полученных этим способом, позволяют изготавливать волоконные световоды длиной до 10 км.
- Достижимые величины затухания на длине волны λ = 1300 нм в настоящее время составляют 0,5 дБ/км.
- Причиной этому является то, что во внутренней части трубы, контакт синтезируемого стекла с пыльным или влажным воздухом полностью отсутствует.
- Для реализации данного метода нужна очень хорошая труба заготовка без включений, так как включения – это центры напряжений, из которых могут начать расти трещины. Этого можно избежать путем химической или огневой полировки

Модифицированный метод химического осаждения из газовой фазы

- Преимущества метода:
- В процессе изготовления каждого слоя сохраняется закрытое пространство, что позволяет избежать примеси посторонних материалов.
- Легко управлять показателем преломления слоя.
- Оборудование, использованное для производства, относительно несложно по конструкции и просто в управлении.
- Неудобства метода:
- Размер стержня заготовки ограничен размером установки и трубкой кварцевого стекла.

• Должна использоваться только заготовка из кварцевого

OVD – outside vapor deposition – метод внешнего осаждения

В данном методе стекло осаждается на огнеупорный стержень прямо из пламени горелки, куда подаются хлориды исходных веществ.

- Поскольку осаждение происходит в атмосфере пламени, в таком материале остается много воды, получившейся в результате окисления водорода. Поэтому, после того как центральный стержень вынимают, приходится продувать заготовку хлором, который экстрагирует воду. И только после этого заготовка остекловывается.
- Перечисленные выше три фазы процесса, а именно – осаждение на огнеупорный стержень, сушка и остекловывание, происходит последовательно. Поэтому каждая фаза может быть оптимизирована отдельно, что позволяет

Рис. 3 Изготовление затотовки методом ОУЭ (а) с последующей сушкой (b) и спеканием (c).

Метод внешнего осаждения

Преимуществами этого метода являются:

- Отсутствие предела размера стержня заготовки.
- Осаждение, дегидрация и процессы спекания отделены друг о друга.

Неудобства метода:

- В этом методе все химические реакции происходят на открытой площади, что способствует более легкому доступу для примесей.
- Во время снятия сырьевого материала с заготовки на внутренней стенке трубки происходит натяжение, которое приводит к появлению трещин и иных нарушений в структуре волокна.

VAD – axial vapor deposition – метод аксиального осаждения

SiO2-GeO2- Стекло He, Cl₂ для ядра и оболочки Спекание стекла Просушивание He, HCI SiO2-GeO2-Порошок HCI, H2O, SIO H2, O2 SiCl₄, GeCl₄

В этом методе заготовка растет из затравки, расположенной на определенном расстоянии выше пламени горелки, имеющей сложную слоевую структуру, как у рулета.

- В середину пламени подают смесь хлоридов германия и кремния, затем слой буферного газа, потом только хлорид кремния для чистого стекла, потом опять буферный газ, и в конце концов на краю горелки, кислород с водородом – то, что, собственно говоря, и горит.
- Вещество осаждается на только что созданную в этом же процессе поверхность. Однако расстояние до этой поверхности должно быть

Рис. 4 Изготовление заготовки VAD - методом.

Метод аксиального осаждения

Преимуществами этого метода :

- заготовка для оптоволокна может быть сделана непрерывно бесконечной длины;
- пламя горелки не двигается, и коэффициент газов, текущих от нее всегда константа;
- производительность наплавки ~ от 1 до 3 г/мин;
- волокно с малыми потерями может быть легко изготовлено при использовании процесса обезвоживания.

Неудобства метода:

 трудность управления пламенем для того, чтобы сделать необходимый профиль;

волокна с широкой

полосои

Сравнение методов получения заготовки для волоконных световодов

	MCVD	PMCVD	PCVD	OVD	VAD
Химическая реакция	окисление	окисление	окисление	гидролиз	гидролиз
Подача тепла	кислородно- водородная горелка	плазма (1 атм.), кислородно- водородная горелка	микроплазма (10 торр)	кислородно- водородная горелка	кислородно- водородная горелка
Скорость осаж- дения, г/мин	0,5 - 2	3 - 6	0,5 – 2,5	5	3 - 6
Эффективность осаждения, %	50 - 60	70 - 90	SiCl ₄ = 100	50 - 70	50 - 70
Размер заготовки (волокон. км)	5 - 10	20 - 50	>50	5 - 10	50- 100
Контроль поверхности	очень легко осуществим	легко осуществим	очень легко осуществим	легко осуществим	Для SM волокон легко осуществим, для GI волокон требуются некот. тех. приемы
Применение	АТ&Т и многие страны	АТ&Т (в разработке)	Philips	Corning	Япония

 \bullet

Потери в активных световодах

- Максимальная концентрация активных ионов в сетке кварцевого стекла невелика и ограничивается их растворимостью, а также возникновением кооперативных эффектов.
- Это приводит к тому, что длина активной среды волоконного лазера может достигать нескольких десятков метров.
- Нерезонансные оптические потери в активных световодах от **5** до **20** дБ / км.

Рис. 5 Спектр оптических потерь в сердцевине активного световода при концентрации ионов Yb³⁺, равной 8•10¹⁹ см⁻³.

Волоконные световоды на основе плавленного кварца, легированные ионами иттербия **(Yb⁺³)**

Модельный профиль преломления (a) и принцип преобразования многомодового излучения накачки в одномодовое излучение волоконного лазера (б).

 \bullet

۲

Структура внутренней оболочки волоконного световода

Геометрия	Поглощение на λ = 978 нм (дБ/м)		
оболочки	Прямое волокно	«Восьмерки»	
Круглая	$0,3 \pm 0,05$	$0,6 \pm 0,05$	
Д – образная	$2,2 \pm 0,05$	$2,2 \pm 0,05$	
Прямоугольная	$3,5 \pm 0,05$	$3,5 \pm 0,05$	
Квадратная	$3,3 \pm 0,05$	$3,3 \pm 0,05$	

 \bullet

•

Схемы накачки активных световодов

Торцевая накачка.

<u>Достоинство</u> – возможность использования для всех видов световодов с двойной оболочкой.

<u>Недостаток</u> – возможность использования лишь одного источника накачки (лазерного диода или их сборки).

Схемы накачки активных световодов

2. Схема накачки через **V** – образную канавку.

• • • • • • •

Схемы накачки активных световодов

3. Схема накачки с использованием

двойного световода.

Особенности – отношение мощностей накачки в обоих световодах определяется отношением площадей их оболочек.

- При распространении по активному световоду поглощение части накачки в его сердцевине компенсируется дополнительной перекачкой излучения из пассивного световода, необходимой для поддержания постоянного отношения мощностей накачки в активном и пассивном световоде.
- В данной схеме возможно использование двух источников накачки, излучение которых вводится с противоположных концов пассивного световода.

Генерационные параметры иттербиевых волоконных световодов, легированных Р,О, и АІ,О,

- настоящее время в волоконных лазерах используются, B главным образом, два типа иттербиевых световодов на основе плавленого кварца:
- с сердцевиной, легированной P₂O₅ (фосфоросиликатные (ФС) световоды);
- с сердцевиной, легированной Al₂O₃ и небол количеством GeO₂ (алюмосиликатные (AC) световоды). небольшим

Указанные добавки необходимы для:

- формирования профиля показателя преломления световода;
- реализации однородного введения Yb в матрицу стекла;
- устранения явления кластеризации;
- снижения оптических потерь в световодах.
- Массовое содержание фосфора, алюминия и иттербия в сердцевинах ФС и АС световодов :

 - фосфора (4 -10%); алюминия (1 -2%);
 - иттербия **(1 8%);** иттербия **(1 3%).**

Измерение сечений вынужденных переходов.

- Для определения спектральных диапазонов , в которых возможно получение генерации иттербиевых лазеров , необходимо измерять спектральные зависимости сечения поглощения $\sigma_a(\lambda)$ и вынужденного излучения $\sigma_e(\lambda)$ апазоне длин волн $\lambda = 850 4200$ Для измерения сечения поглощения в световодах используются следующие методы, основанные на :
- измерении поглощения слабого сигнала в световоде (метод поглощения слабого сигнала);
- наблюдении насыщения люминесценции при увеличении мощности накачки (метод насыщения люминесценции).

Сечение вынужденного излучения можно определить по спектрам люминесценции и по времени жизни ионов Yb³⁺ на верхнем лазерном уровне

$$\sigma_e(\lambda) = \frac{\lambda^3}{8 \pi c n^2 \tau} \frac{I(\lambda)}{\int \lambda I(\lambda) d\lambda}$$

- где с скорость света в вакууме, *τ* время жизни иона на верхнем лазерном уровне, *n* – показатель преломления материала, *I* (λ) – спектр интенсивности люминесценции.
- Время жизни иона в ФС матрице 1,45 мс; и 0,83 мс в АС матрице.

По спектрам поглощения и люминесценции ФС и АС световодов были определены положения энергетических подуровней основного E_{1i} и возбужденного E_{2j} состояний ионов Yb^{3+} .

Таблица 1. Положение подуровней Yb⁺³ в АС и ФС матрицах стекла сердцевины волоконных световодов.

Схема уровней **Yb³⁺**

	Под- уровень	Энергия (см ⁻¹)		
Уровень		ФС	AC	
		световод	световод	
² F _{7/2}	a	0	0	
	b	260	400	
	c	440	760	
	d	740	1210	
² F _{5/2}	e	10260	10245	
	f	10520	10917	
	g	10930	10940	

۲

•

Рис. 6 Спектральные зависимости сечений вынужденных переходов Yb³⁺ в ФС волоконных световодах. Ширина основного пика сечения поглощения – (Δλ = 4.8 нм).

Диапазон длин волн генерации **Yb** лазеров на ФС и АС световодах с двойной оболочкой.

Для коэффициента усиления в сечении с продольной координатой z можно записать:

$$g(\lambda, z) = \sigma_e(\lambda) (A)(z) - \sigma_a(\lambda) n_1(z)$$

где n₁ – концентрация ионов Yb³⁺ в основном состоянии в единице объема; n₂ - концентрация ионов Yb³⁺ в возбужденном состоянии. Коэффициент усиления за обход резонатора

 $G(\lambda) = 2 \left[\sigma_e(\lambda) + \sigma_a(\lambda) \sigma_0 L - 2\sigma_a(\lambda) n_0 L \right]$ где $\mu = \frac{\int_0^L n_2(z) dz}{n_0 L} -$ полная концентрация ионов иттербия в единице объема. На пороге генерации выполняется условие:

 $G(\lambda) = \gamma(\lambda)$ - потери излучения на длине волны λ . На пороге генерации доля ионов на верхнем уровне есть

$$\mu(\lambda) = \frac{\sigma_a(\lambda) n_0 L + \gamma(\lambda)/2}{[\sigma_e(\lambda) + \sigma_a(\lambda)] n_0 L}$$

•

 \bullet

Допустимые диапазоны длин волн генерации для двух комбинаций резонансных и нерезонансных потерь.

Допустимые диапазоны длин волн генерации для двух комбинаций резонансных и нерезонансных потерь.

То же, что и на предыдущем рисунке для Yb – лазера на основе ФС световода (λ = 974.5 нм). Усилительные свойства активных световодов с высокой концентрацией ионов эрбия.

- Волоконные световоды, легированные ионами эрбия, относятся к одному из самых распространенных типов активных волоконных световодов вследствие их широкого использования в волоконных усилителях для систем оптической связи.
- Одной из важных характеристик усилителя является длина используемого световода, которая, в основном, определяется концентрацией активных ионов.
- Эффективность усиления снижается, если концентрация ионов эрбия превышает определенный предел, причем величина этой предельной концентрации зависит от наличия и концентрации других легированных примесей.
- Падение эффективного усиления объясняется кластеризацией ионов эрбия, причем с ростом абсолютной концентрации оксида эрбия относительная доля кластеризованных ионов возрастает.
- Установлено, что введение оксида алюминия (Al₂O₃) в сетку кварцевого стекла позволяет повысить предельную концентрацию редкоземельных ионов.

Схема экспериментальной установки

В качестве источника сигнала использовался волоконный лазер с максимальной выходной мощностью 5 мВт на длине волны 1.56 мкм, в качестве источника накачки – полупроводниковой лазер с волоконным выходом и выходной мощностью до 300 мВт на длине волны 0.976 мкм.

Измерение коэффициента усиления

Рис.8 Расчетная зависимость усиления без учета передачи энергии в кластерах (1) и результаты измерения и расчета с учетом передачи энергии в кластерах (2) и (3). Кривая 2 построена для

световода с концентрацией ионов эрбия - 6,5 ·10¹⁹ см ^{- 3}; кривая 3 – для световода с концентрацией ионов эрбия - 10²⁰ см ^{- 3.}

Мощность непрерывного входного сигнала 1 мВт на длине волны 1,56 мкм.

Длина использованных световодов – 1.6 м и 0.8 м.

Установлено, что в световодах с высокой концентрацией ионов эрбия основным источником снижения усиления является передача энергии в кластерах активных ионов. Влияние концентрации активных ионов на эффективность усиления

Рис.9 Результаты расчета и измерения квантовой эффективности усилителя от концентрации ионов эрбия для световода с высокой концентрацией примеси Al₂O₃.

Видно, что квантовая эфективность световода с невысокой концентрацией ионов эрбия (10¹⁸ см ⁻³) достигает примерно 85%, а у световодов с концентрацией активных ионов до 10²⁰ см ⁻³ она падает до 33%.

Полученные данные могут быть использованы для оптимизации схемы эрбиевых волоконных усилителей.

Фотоиндуцированные волоконные решетки показателя преломления

Схема волоконной решетки показателя преломления

- 1 фоточувствительная сердцевина
- 2 кварцевая оболочка

Типичные параметры брэгговской
решетки:L = 5 мм, $\delta_n = 8 \times 10^{-4}$, $\Lambda = 0,4$ мкм $\rightarrow R \sim 0,99$ на $\lambda = 1136$ нм и $\Delta \lambda = 0,4$ нм

Основные характеристики решетки:

- период модуляции показателя преломления Л
- величина наведенного изменения показателя преломления бп
- число штрихов или длина решетки L
- спектральная ширина $\Delta \lambda_{\rm br}$
- коэффициент отражения R

$$\lambda_{\rm br} = 2 n_{\rm ef} \Lambda$$

n_{ef} – эффективный показатель преломления основной моды световода

 $R = th^2 (kL)$

k - коэффициент связи, k = π η δn / λ_{br} η - доля мощности основной моды, распространяющейся по области, в которой наведено изменение показателя преломления. δn ≈ (10⁻⁴ ÷ 10⁻³) n $\Delta \lambda_{br} = 2 \lambda_{br} \Lambda / L [1 + (kL/π)^2]^{1/2}$ $\Delta \lambda_{br} \approx 10^{-6} \lambda_{br}$

۲

Волоконные решетки показателя преломления

- Наиболее важным свойством волоконных брэгговских решеток является узкополосное отражение оптического излучения, относительная спектральная ширина которого может составлять 10⁻⁶ и меньше.
- Преимущества волоконных фотоиндуцированных решеток в сравнении с альтернативными технологиями (например, интерференционные зеркала и объемные дифракционные решетки):
 - широкое разнообразие получаемых спектральных и дисперсионных характеристик, многие из которых могут быть реализованы только на основе волоконных решеток ПП;
 - полностью волоконное исполнение;
 - низкие оптические потери;
 - относительная простота изготовления.

Волоконные брэгговские решетки связывают основную моду световода с той же модой, распространяющейся в противоположном направлении. Это означает, что на определенной длине волны λ_{br} расиространяющееся по световоду излучение отражается от решетки полностью или частично. Коэффициент отражения на резонансной длине

$$\lambda_{\rm br}$$
: $R = t h_0^2 (kL)$

k = π Δn-козффициент связи; - ампл<u>и</u>туда синусоидальной модуляции ПП, η - часть мощности основной моды, которая распространяется по сердцевине световода.

Спектральная ширина резонанса однородной решетки на полувысоте выражается следующим

$$\Delta \lambda_{br} = 2\lambda_{br} \frac{\Lambda}{L} \left| 1 + \left(\frac{kL}{\pi}\right)^2 \right|$$

Как видно из (2), спектральная ширина зависит не только от длины решетки и его периода, но также и от амплитуды модуляции ПП $\Delta n_{
m mod}$.

Рис. 10 Спектр отражения $R(\lambda)$ (сплошная кривая) и групповая задержка $\tau(\lambda)$ (штриховая кривая) однородных брэгговских решеток с различной амплитудой наведенного ПП : $\Delta n_{mod} = 5 \cdot 10^{-5}$ (a), $\Delta n_{mod} = 7.5 \cdot 10^{-4}$ (б). На врезках: схематический профиль ПП, наведенного в решетках.

- В спектрах однородных ВБР обычно наблюдаются боковые максимумы, положение которых определяется длиной решетки.
- Для частичного или полного подавления этих максимумов применяется так называемая анодизация решеток, под которой подразумевается плавное изменение амплитуды модуляции наведенного ПП в решетке по ее длине.

т (пс)

Рис.11 Спектр отражения *R*(λ) (сплошная кривая) и групповая задержка τ (λ) (штриховая кривая) для ВБР с гауссовой огибающей профиля наведенного ПП.

Рис. 12 Дисперсия $D(\lambda)$ (сплошная кривая) и групповая задержка $\tau(\lambda)$ (штриховая кривая) брэгговской решетки с гауссовой огибающей профиля наведенного ПП и переменным периодом.

На врезках - спектр отражения решетки *R*(λ) и схематический профиль наведенного ПΠ Δ*n*(*z*).

 \bullet

۲

۲

۲

•

•

•

Резонансная длина волны брэгговских решеток λ_{br} зависит от температуры световода и от приложенных к нему механических растягивающих или сжимающих напряжений :

где $T^{A\lambda_{br}} = 2\pi A \left[\left\{ 1 - \left(\frac{n^2}{ne} \right) \right] P_{P_{abs}} \left[P_{e_{abs}} \left(P_{e_{abs}} - P_{e_{abs}} \right) \right] \right\} \varepsilon_{abs} + \left[\varepsilon_{abs} + \left[\frac{n}{n} + \frac{1}{n} \frac{dn}{np} \right] \right] T_{abs} + \frac{1}{n} \frac{dn}{np} \right] T_{abs}$, механическое напряжение, $P_{ij} - \kappa_{0}$ - коэффициенты Поккельса упруго – оптического тензора, ν - коэффициент Пуассона, α - коэффициент теплового расширения кварцевого стекла, n - эффективный показатель преломления основной моды.

Это соотношение дает типичные значения сдвига λ_{br} в зависимости от температуры ~ 0.01 нм/ К и от относительного удлинения световода ~ $10^3 \cdot \Delta h/L$ (нм).

Типы фоточувствительности в германосиликатных световодах

Значительный вклад в изменение ПП в сердцевине германосиликатных световодов вносит фотоиндуцированная трансформация германиевых кислородно-дефицитных центров (ГКДЦ), которая приводит к образованию новых дефектных центров, а также к деформации сетки, проявляющейся в увеличении плотности стекла и изменении его показателя преломления. В спектре поглощения германосиликатного стекла доминируют две полосы с максимумами 242 и 330 нм.

В настоящее время известно несколько типов фоточувствительности германосиликатных световодов. Эти типы проявляются при различных условиях облучения световодов и отличаются друг от друга по динамике записи, отжига и другим свойствам фотоиндуцированных решеток.

 \bullet

- Реализуется при концентрации германия в сердцевине менее 20 мол. %.
- Характеризуется монотонным возрастанием ПП при увеличении дозы УФ – облучения.
- Характеризуется степенной зависимостью наведенного ПП от дозы :

$$\Delta n_{ind} \sim D_{ind}^{b}$$

показатель степени *b*, как правило находится в диапазоне 0,3 - 0,5.

- Основную роль в формировании решеток типа *I* играет индуцированная УФ – излучением трансформация дефектных центров германосиликатного стекла и связанное с ней уплотнение сетки.
- Имеют относительно невысокую температурную стойкость, их заметная деградация наблюдается при температурах 200 – 300 °C.

 \bullet

Решетки типа I

Рис. 13 Зависимости амплитуды модуляции наведенного показателя преломления для волоконных брэгговских решеток, записанных в световодах с концентрацией германия 12 мол. % (1) и 35 мол % (2).

Решетки типа Па

- При записи ВБР в световодах с высокой концентрацией германия (20 мол. % и более) после начального роста амплитуды модуляции наведенного ПП (коэффициента отражения) ее величина снижается практически до нулевого значения, а затем возрастает вновь, в дальнейшем стремясь к насыщению (рис. 13 кривая 2).
- Явление уменьшения индуцированного ПП при УФ облучении называют фоточувствительностью типа *Па*, а решетки, которые записаны в области второго возрастания коэффициента отражения, решетками типа *Па*.

В настоящее время известно, что образование решеток типа *Па* тесно связано с изменением упругих напряжений в сетке германосиликатного стекла, происходящим при УФ – облучении. Особенности решеток типа *Па*:

- низкотемпературная водородная обработка приводит к полному исчезновению типа *Па* и формирование этого типа вновь наблюдается после выхода молекулярного водорода из сетки стекла;

- решетки типа *Па* имеют существенно более высокую температуру отжига в сравнении с решетками типа *I* (500 – 600 ⁰C).

Волоконные решетки показателя преломления. *Решетки типа* **П**

- Решетки данного типа записываются путем облучения волоконного световода одним импульсом эксимерного лазера с плотностью энергии в импульсе около 1 Дж/см².
- В результате воздействия такого мощного импульса возникает интенсивный прогрев сердцевины световода, сопровождающийся частичным плавлением граничной с сердцевиной области оболочки.

Недостатки:

- процесс записи весьма трудно контролировать из за нестабильности энергии эксимерного лазера от импульса к импульсу;
- асимметрия наведенного изменения свойств стекла в области сердцевины приводит к эффективному возбуждению оболочечных мод, что сопровождается значительными потерями с коротковолновой стороны от основного резонанса;
- при облучении световода столь большими плотностями оптической мощности (~ 10⁸ Bt/cm²) в ряде случаев происходит частичное повреждение поверхности световода, что резко снижает его механическую прочность.

Волоконные решетки показателя преломления. *Решетки типа* Іа

- В присутствии молекулярного водорода в световодах, легированных одновременно германием и бором, возникает еще один тип фоточувствительности, характеризующейся сложной динамикой коэффициента отражения и резонансной длины волны.
- Как и в решетках типа *Па*, начальный рост коэффициента отражения сопровождается его уменьшением и последующим новым ростом.
- В отличии от типа *Па*, резонансная длина волны с дозой УФ облучения сдвигается в длинноволновую область на очень большую величину 15 20 нм, что соответствует изменению среднего ПП в сердцевине ~ 2 · 10⁻².

Такой тип фоточувствительности был назван типом Іа.

Особенности решеток этого типа:

- меньшая (на 30 %) температурная чувствительность в сравнении с решетками типа *I* и *Па*.

Методы увеличения фоточувствительности волоконных световодов

- Значительный интерес представляет увеличение фоточувствительности уже изготовленных, в том числе стандартных световодов без значительных изменений их собственных характеристик.
- Насыщение сетки стекла водородом при высокой температуре способно на порядок увеличить наведенный показатель преломления стандартных световодов.
- Такая обработка может быть выполнена на небольшом участке световода и обеспечивает повышенную фоточувствительность этого участка в течение длительного времени.

Этот способ приводит к значительному росту концентрации ОН группы в сетке стекла, которые имеют полосы поглощения в области **1.4** мкм .

Значительно уменьшается прочность световода.

- Насыщение сетки стекла молекулярным водородом при относительно низких температурах (~ 100 ° C).
- Увеличение фоточувствительности с помощью механического растяжения световода при записи в нем решеток. При этом наведенный ПП увеличивается в 3 4 раза при фиксированных параметрах облучения в сравнении с ненатянутым световодом, что позволяет сократить время записи решеток примерно на порядок.

Недостатки способа увеличения фоточувствительности при помощи механического растяжения световода

- приложенные деформации имеют довольно большую величину (3% и более), что требует высокого качества поверхности растяжения при записи;
 - деформации значительно изменяют резонансную длину волны решетки, поэтому они должны быть учтены и заданы с высокой точностью, чтобы решетка после освобождения от механической нагрузки имела нужную длину волны.

GIAGUEO 3A BHAMAHAE III

• • • • • • •