Лекция 2. **УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНЫХ ГАЗОВ**

- 1.ОСНОВНЫЕ ЗАКОНЫ ИДЕАЛЬНЫХ ГАЗОВ
- **2.** УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНЫХ ГАЗОВ
- **3.**УНИВЕРСАЛЬНОЕ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

1. ОСНОВНЫЕ ЗАКОНЫ ИДЕАЛЬНЫХ ГАЗОВ

• Идеальный газ

• Закон Бойля — Мариотта: при постоянной температуре объем, занимаемый идеальным газом, изменяется обратно пропорционально его давлению:

$$|v_1/v_2| = p_2/p_1|^2$$
 (2.1)

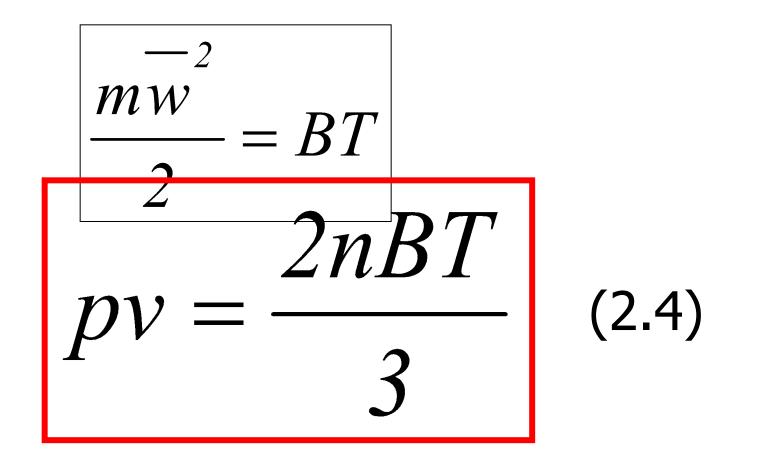
$$p_1 v_1 = p_2 v_2 = c \delta nst$$

• Закон Гей-Люссака: при постоянном давленир объемы одного и того же количества идеального газа изменяются прямо пропорционально абсолютным температурам:

$$v_1/v_2 = T_1/T_2$$
 (2.2)

 $p=const$

2. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНЫХ ГАЗОВ


$$F(p, v, T) = 0$$

$$p = \frac{2}{3} \cdot \frac{n}{v} \cdot \frac{mw}{2}$$

(2.3)

$$\frac{-}{w} = \sqrt{\frac{w_1^2 + w_2^2 + \dots + w_n^2}{n}}$$

Молекулярно-кинетическая теория газов устанавливает *прямую пропорциональность* между средней кинетической энергией молекул и абсолютной температурой:

$$p_1 v_1 = 2nBT_1/3$$
 $p_2 v_2 = 2nBT_2/3$ $p_1 v_1 / T_1 = p_2 v_2 / T_2$ (2.5) Объединенный закон Болхя — Мариотка и Гей-Люссака. $pv/T = const$ (2.6)

(2.7) - термическое уравнение состояния идеальных газов или характеристическое уравнение Клапейрона

Для произвольного количества газа с массой m (кг) уравнение состояния имеет вид:

$$pV = mRT$$

Удельная газовая постоянная R представляет собой физическую постоянную, которая для каждого газа принимает вполне определенное значение, зависящее от природы газа и не зависящее от его состояния

Физический смысл удельной газовой постоянной

$$pV_{1} = mRT_{1} \quad pV_{2} = mRT_{2}$$

$$p(V_{2} - V_{1}) = mR(T_{2} - T_{1})$$

$$R = [p(V_2 - V_1)]/[m(T_2 - T_1)]$$

Удельная газовая постоянная есть работа в джоулях 1 кг газа в процессе при постоянном давлении и при изменении температуры на 1°

Единица удельной газовой постоянной:

 $\kappa \epsilon \cdot K$ $\kappa \epsilon \cdot K$

$$R = rac{\left[p(V_2 - V_1)
ight]}{\left[m(T_2 - T_1)
ight]} = rac{H / M^2 \cdot M^3}{\kappa z \cdot K} = H \cdot M$$

3. УНИВЕРСАЛЬНОЕ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Закон АВОГАДРО:

при одинаковых температурах и давлениях в равных объемах различных идеальных газов содержится одинаковое количество молекул:

$$|\rho_1/\rho_2 = M_1/M_2|$$
 (a)

Молярная масса газа

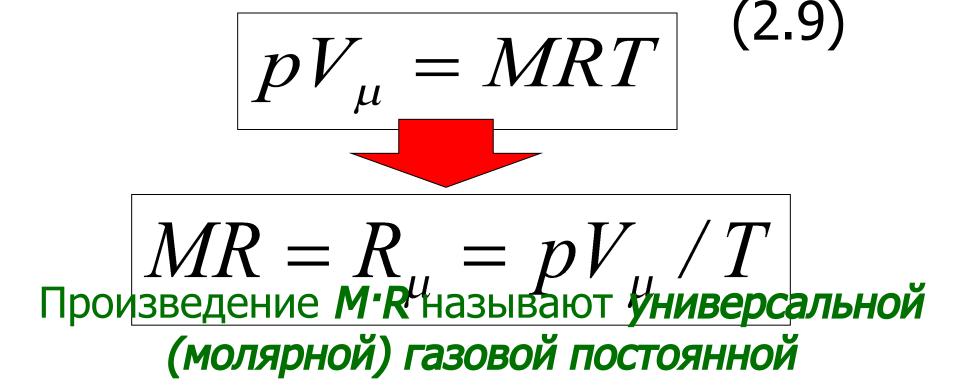
Молярной массой газа (вещества)

называется отношение массы **т** системы к количеству газа (вещества) **v** этой системы:

$$M = m/\upsilon$$

Единица молярной массы:

$$[M] = [1\kappa \varepsilon]/[1моль] = 1\kappa \varepsilon / моль$$


Отношение плотностей газов в уравнении (а) заменим обратным отношением удельных объемов

При одинаковых физических условиях произведение удельного объема газа на его молярную массу есть величина постоянная и не зависит от природы газа:

$$v \cdot M = idem$$
 (2.8)

Объем 1 моль идеального газа

Молярные объемы всех газов при равных температурах и давлениях **ОДИНаковы**

Универсальная газовая постоянная R_{μ} есть работа 1 моль идеального газа в процессе при постоянном давлении и при изменении температуры на 1°.

Нормальные физические условия (давление 101 325 Па и температура *273,15* K)

Объем 1 моль газа равен *22,4143[.]10-3* м³/моль

$$R_{\mu} = \frac{101325 \cdot 22,4143 \cdot 10^{-3}}{273,15} = 8,314$$
 [Дж/(моль К)].

$$pV_{\mu} = 8,314 \cdot T$$
 (2.10)

Уравнение *Клапейрона* — *Менделеева*

$$R = 8.314/M$$

Газ	Химическая формула	Относительная молекулярная масса	Удельная газовая постоянная R , Дж/(кг·К)	Плотность газа при нормальных физических условиях, кг/м ³
Кислород	O_2	32	259,8	1,429
Водород	H_2	2,016	4124,3	0,090
Азот	N	28,02	296,8	1,250
Окись углерода	СО	28	296,8	1,250
Воздух	-	28,96	287,0	1,293
Углекислый газ	CO ₂	44	189,0	1,977
Водяной пар	H_2O	18,016	461,6	0,804
Гелий	Не	4,003	2077,2	0,178
Аргон	Ar	39,944	208,2	1,784
Аммиак	NH ₃	17,031	488,2	0,771

$$pdv + vdp = RdT;$$

$$pu p = const | (\partial v / \partial T)_p = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = const | (\partial p / \partial T)_v = R/p;$$

$$pv p = con$$