ФИЗИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ И ЯВЛЕНИЙ, ЛЕЖАЩИЕ В ОСНОВЕ МЕТОДОВ ПОЛУЧЕНИЯ ИНФОРМАЦИИ О СТРУКТУРНЫХ ХАРАКТЕРИСТИКАХ МАТЕРИАЛОВ

Рис. 51-2. Результаты сравнения рентгенограмм:

таблица сравнения межплоскостных расстояний

Качественный фазовый анализ

🧮 Результаты анализа

Вариант (Список	Таблица	График	ка) Усл	. концент	рации	
Образец	1-562	1-1292	2-387	4-477	21-1272	34-180	▲
3.5182	3.52		3.51	3.51	3.52		
3.247		3.24				3.248	
2.4863		2.49				2.487	
2.4291			2.43	2.435	2.431		
2.3762	2.37		2.37	2.379	2.378		
2.3302			2.33	2.336	2.332		
2.2947		2.29				2.297	
2.1854		2.19					
2.0527		2.05					
1.8915			1.89	1.891	1.892		
1.6997	1.7		1.7	1.699	1.6999		
1.6653	1.66		1.66	1.665	1.6665		
1.6232		1.62				1.6239	
1.4913		1.49		1.494	1.493		
1.4806	1.48			1.48	1.4808		<u> </u>
Печать							
🗆 Список 🔲 Таблица 🔲 Усл. концентр. 🛛 ОК							Закрыть
							Свернуть

Рис. 52. Сравнение штрихдиаграммы образца со штрихдиагаммой одного из стандартов: 21-1272, анатаз

🗎 Результаты анализа				X
Вариант Список Таблица Графика Усл. концентрации	d			
21-1272 TiO2				
1-562 TiO2 1-1292 TiO2 2-387 TiO2 4-477 TiO2 21-1272 TiO2				21-1272
34-180 Ti O2			al a	i de la ca
2 510		11.	а. 1. 1.	Образец
3.018				1.042

Рис. 53. Расчет концентраций компонентов и сравнение штрихдиаграмм образца и модели: 21-1272, анатаз; 1-1292, рутил.

Рис. 54 Полиморфные модификации оксида титана

МЕТОДЫ ПОЛУЧЕНИЯ ИНФОРМАЦИИ, В ОСНОВЕ КОТОРЫХ ЛЕЖИТ

ЯВЛЕНИЕ ФОТОЭЛЕКТРИЧЕСКОГО ПОГЛОЩЕНИЯ

Рис. 1. К расчету коэффициента ослабления

 $I = I_{o} exp(-\mu_{m} \rho t) - закон ослабления рентгеновских лучей в веществе$ $\mu_{m} - массовый коэффициент ослабления, равный сумме коэффициентов$ $истинного поглощения (<math>\tau_{m}$) и рассеяния (σ_{m}): $\mu_{m} = \tau_{m} + \sigma_{m}$. $\sigma_{m} \sim 0.2 \text{ см}^{2}/\Gamma$

ρ- плотность материала, t – толщина

μ_m (λ, Ζ)

Рис.2. Зависимость коэффициента истинного поглощения ПЛАТИНЫ (Pt) от длины волны падающего излучения

Рис. 3.

Зависимость атомного коэффициента поглощения от атомного номера элемента Z для длины волны λ =1 Å

Рис. 4. Схема возникновения первичного и вторичного (флуоресцентного) рентгеновского характеристического излучения

Разрешенные переходы электронов на К - уровень.

Закон Мозли 1913 г.

 $R_{c}=3.29 \cdot 10^{-15}$ Гц

Генри Гвин-Джефрис Мозли (1887-1915), английский физик, Источник: © Calend.ru http://www.calend.ru/person/3467/

Рис. 7. Зависимость корня из частоты вторичного излучения от атомного номера элемента

Определение коэффициента поглощения фона, создаваемого на рентгенограмме флуоресцентным излучением образца.

Рис. 8. Схема регистрации углового распределения интенсивности а – без фильтра; б - с фильтром перед счетчиком

Рис. 9. Угловое распределение интенсивности а – без фильтра; б с фильтром перед счетчиком

14

Закон ослабления для фона:

$$I_{\phi o \mu}^{\phi u n \text{b tp}} = I_{\phi o \mu} \exp(-\mu_{m}^{\phi o \mu} \rho t)$$
$$\mu_{m}^{\phi o \mu a} = \frac{1}{\rho t} ln \frac{I_{\phi o \mu}}{I_{\phi o \mu}^{\phi u n \text{b tp}}}$$

15

Методы рентгеновского анализа

- Рентгенгофлуоресцентный анализ
 - Волнодисперсионный
 - Энергодисперсионный
 - Полного внешнего отражения
 - Со скользящим углом отбора
 - С поляризованным пучком
 - На сорбционных фидьтрах
 - С различными видами возбуждения: синхротрон, частицы, радиоизотопы, трубки с капилярной оптикой
- Рентгеновский эмиссионный анализ
- Рентгеновский микроанализ
- Рентгеновский абсорбционный анализ
 - Интегральный
 - Спектроскопия краев поглощения
- Рентгеновская дефектоскопия
- Фотоэлектронная спектроскопия
- Оже-электронная спектроскопия
- Рентгенолюминисцентный анализ
- Рентгенодифракционный анализ
- Рентгеновская рефлектометрия
- Рентгеновская рефрактометрия

Рис.10. Результаты энергодисперсионного флуоресцентного анализа

ЕХАFS (ТСРП) – АНАЛИЗ ТОНКОЙ СТРУКТУРЫ РЕНТГЕНОВСКОГО ПОГЛОШЕНИЯ

 $E_2 > E_1$

E1

E,

а ИЛА А-атомы

Рис. 11.Схематическое изображение появления спектра EXAFS

Рис. 12. Спектры EXAFS сплава железо-никель (Fe-Ni), имеющего ГЦК решетку и содержащего 45% никеля

Рис. 13. а) Экспериментальный спектр EXAFS µ (E) вблизи К-края поглощения железа.

б) Распределение электронной плотности

Рис. 14. Схема EXAFS-экспериментальной установки, используемой в Стэнфордской лаборатории синхротронного излучения

Рис. 15. Принципиальные блок-схемы а) рентгеновской дифрактометрии; б) рентгенофлуоресцентной спектрометрии; в) рентгеновской спектрометрии поглощения (EXAFS, XANES) 22