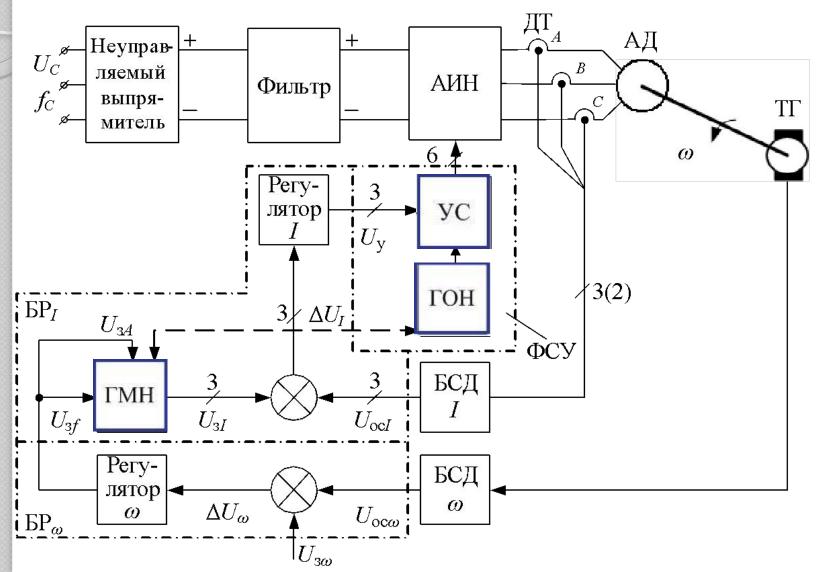

И. А. Баховцев

Микропроцессорные системы управления устройствами силовой электроники


Глава 1 МПСУ Автономными инверторами напряжения

И. А. Баховцев

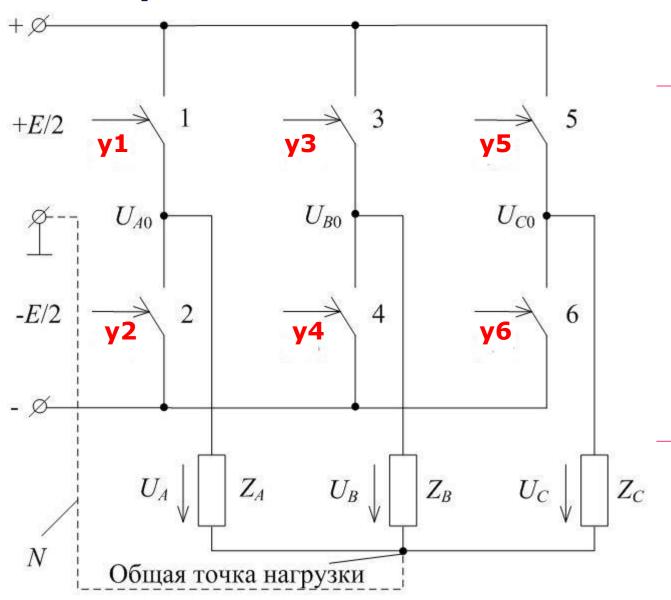
Типовая структура системы автоматического регулирования электроприводом переменного тока

Программная часть системы управления

- Отличия электропривода переменного тока ни форми управлени **тила сигналов**: опорный сигнал пилообразной формы и модул<u>ни</u>руюрую сулгнатричания сулнуємимаменой фаручьки имеющие различные частоты
- Модулирующий сигнал и сигнал обратной связи по току имеют финусоидальную знакопеременную форму. Частота опорного сигнала в системе управления АИН,
- как правило, значительно больше 300 Гц
- Для управдения двикателями гирененнило торком используются прежде всего законыенаето прежде

и вектору потокосцепления статора или ротора, момента и т.д.

ВЫВОД: Микропроцессор МПСУ АИН должен обладать:


- разрядностью не менее 16 бит;
- тактовой частотой не менее 50 МГц, для обеспечения производительности десятки
 сотни MIPS.

Поэтому МПСУ АИН появились гораздо позже, чем МПСУ УВ

1.2.1. Коммутационная модель АИН

Коммутационная модель АИН

Комплементарный режим управления

Это - необходимое условие независимости формы выходного напряжения АИН от соѕф нагрузки:

Как видно, КФК $\mathbf{y_1} \equiv \mathbf{U_{A0}}$, аналогично $\mathbf{y_3} \equiv \mathbf{U_{B0}}$ и $\mathbf{y_5} \equiv \mathbf{U_{C0}}$, значит зная форму коммутационных функций верхних ключей, можно построить кривые фазного и линейного напряжения.

Коммутационные функции фаз

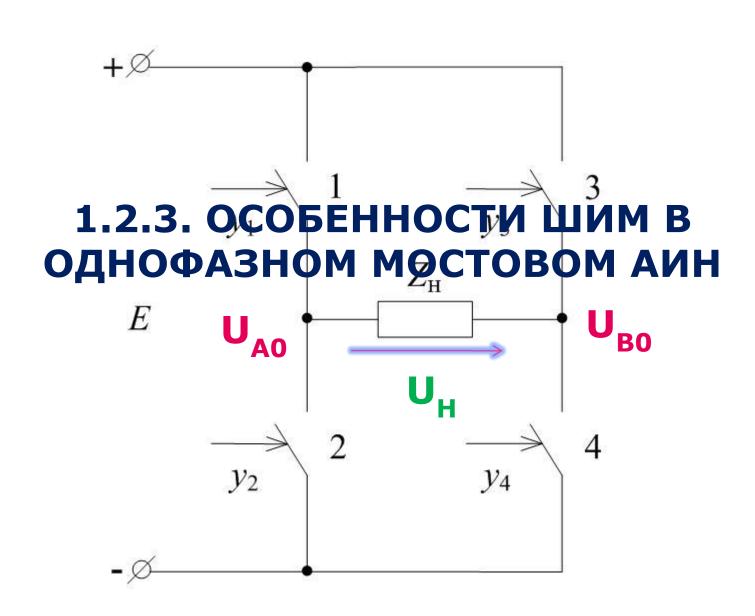
И. А. Баховцев

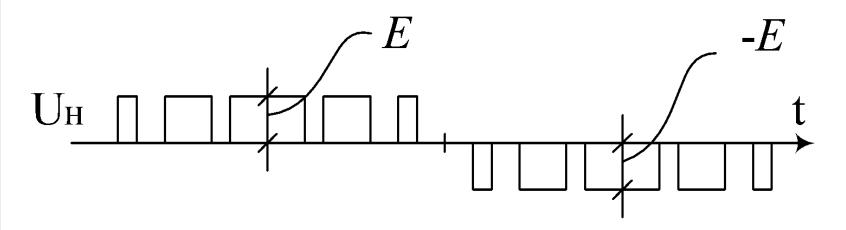
• Задавая требуемые длительности импульсов управления ключами (и измежение этих длительностей во времени), можно управлять качеством выходной, входной энергии АИН и его внужения выходной в колительностей во времени).

1

Опорный Модулирующий сигнал ШИМ сигнал

Форма опорного валает длител	Внешний вид опорного настоту (НЕВМЕД) модулированных поньности импульсов (т.е. частоту коммута	Регулиро- вочная характе-	L OB
управлен вентил Пил <mark>ежени,</mark> форма	ия (и выходного напряжения айт ей АИН) а также уастору опорного сигнала определяетимло фр опоружируемых по положению на пе	у во Кинейная Кортов (од	ци4
• ок озырас Треуголинум)ы	то сунцествя суднюств рыя ння <mark>сция</mark> меж ая ц с // ра м/тувь и зверве йрю годажуря все оженных на том же периоде.	1	яя 2
Нелинейная форма (синусоида экспонента.)	опорного сигнала определ яв тлимейнос ровочной характеристики АЙ Н ІИМ	П елиней- ная	2

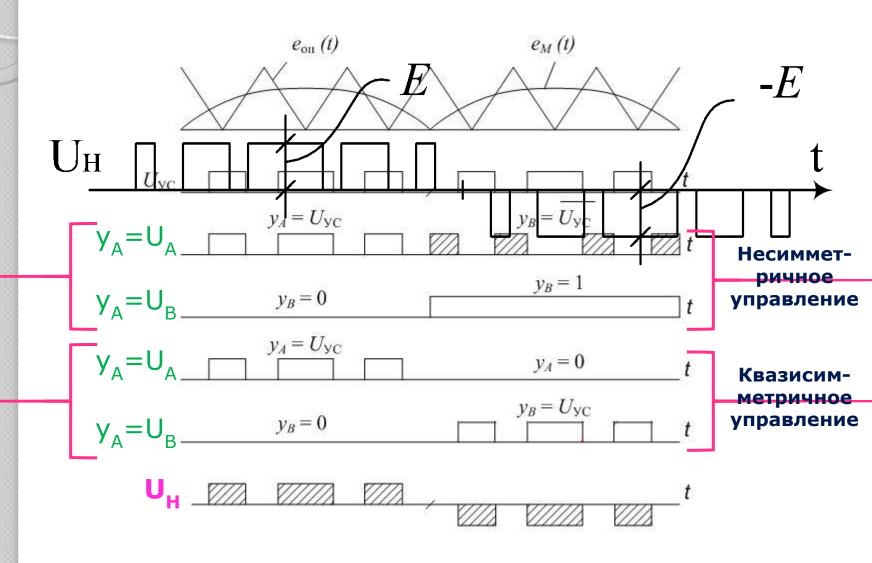

Примечание. L – число импульсов в линейном напряжении на периоде биполярного опорного сигнала. Для однополярного опорного сигнала всегда L=1.


Опорный сигнал

Форма	Внешний видмодульную по	Качество	Линейный
модулирующего	сигнала	выходного	диапазон
сигнала		напряжения	регулировочной
(тип ШИМ)			характеристики
Пряморгольная ч (-/-ШИМ, ШИР)	ески <mark>й сигнал пр</mark> едста	ВЛЯЕТСЯ НЕ КО тельное	Мниженьй
Треугольная	и в виде вращающего	Неудовлетвори-	Традиционный
MAHAMP3A	ется понятие «обобще	HHOEST ESTATE	a»
Трапецеидальная Трехфазн	ой с истемы напр яжен	Неудовлетвори- ИЙ, тельное	Расширенный
Синумире примав.	пение на комплексной	плости 6	Сеновнанж
Синусоидальная	і АИН в ОШИР;	Хорошее	Расширенный
•3-inktoodaga	цие й для формиро ван	ия длительно	
Синусоидальная с требуемо	в я вляется не модули е выходное напряжен	Удовлетвори- ие АИД- ие Аид-	ал, а Расширенный
(Циклическая			
ШИМ)			

И. А. Баховцев

Однополярная синусоидальная ШИМ



- Данное выходное напряжение можно реализовать тремя алгоритмами управления:
- Симметричным
- Несимметричным
- Квазисимметричным

Алгоритмы реализации выходного напряжения однофазного АИН

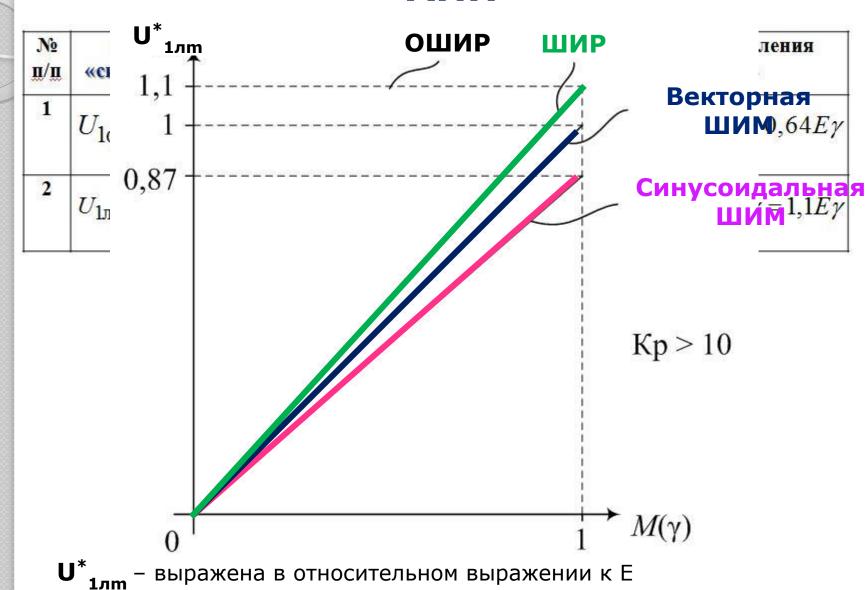
Тип алго- ритма		Плечо А		Плечо В		Устройство сравнения	Форма сигнала
Симмет		$e_{\mathrm{M}}(t), \ e_{\mathrm{OII}}(t)$		$-e_{\rm M}(t), e_{\rm OII}(t)$		Двух- канальное	$e_{_{ m M}}(t),e_{_{ m O\Pi}}(t)$ биполярные
Симмет		$e_{\mathrm{M}}(t), e_{\mathrm{OII}}(t)$		$e_{\mathrm{M}}(t), -e_{\mathrm{OII}}(t)$		Двух- канальное	$e_{\mathrm{M}}(t),e_{\mathrm{O\Pi}}(t)$ биполярные
Несим- метрич- ный	$e_{\mathrm{M}}(t), e_{\mathrm{O\Pi}}(t)$		Нет модуляции			$e_{\mathrm{M}}(t), e_{\mathrm{O\Pi}}(t)$	
		0T/2	T/2T	0T/2	T/2T	Одно- канальное	одно- полярные
		$y_A = U_{yc}$	$y_A = \overline{U_{yc}}$	$y_B = 0$	$y_B = 1$		Поллрпыс
Квази- симмет- ричный	$e_{\mathrm{M}}(t), e_{\mathrm{OII}}(t)$		$e_{\mathrm{M}}(t), e_{\mathrm{OII}}(t)$			$e_{\rm M}(t), e_{\rm O\Pi}(t)$	
	0T/2	T/2T	0T/2	T/2T	Одно- канальное	одно- полярные	
	$y_A = U_{yc}$	$y_A = 0$	$y_B = 0$	$y_B = U_{yc}$		•	

Однополярная синусоидальная ШИМ

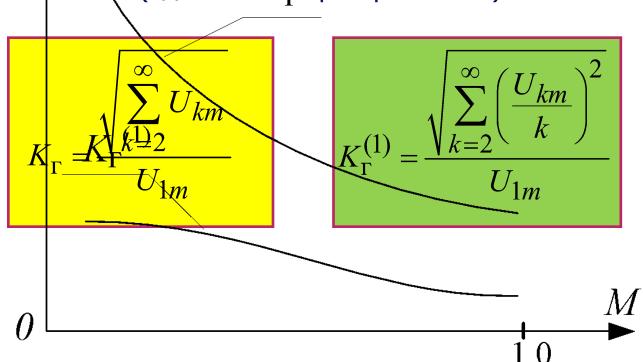
Выводы

- Одну и ту же форму выходного напряжения однофазного АИН можно реализовать в системе управления по-разному
- Это будет справедливо применительно и к другим способам управления и к другим схемам преобразователя
- Разрабатывая систему управления АИН с ШИМ в условиях заданных ограничений, разработчик может придти к собственному, оригинальному варианту реализации

Глубина модуляции


- это отношение амплитуды модулирующего сигнала к амплитуде опорного сигнала.

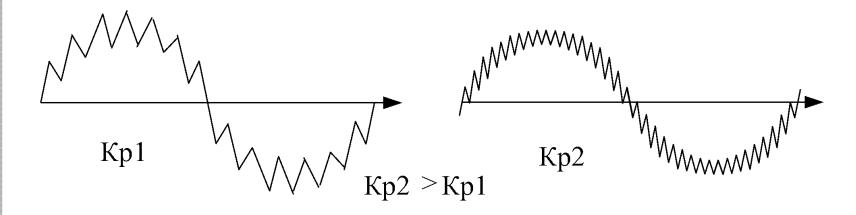
Она**1**ог**3** ед**ЕТАРАМЕТ ВЬ**Ю **ШИРО/ТН•ОВОЙ** Гариритул **Беной** Мордулня ЦИИ


Зависимость амплитуды первой гармоники выходного напряжения от глубины модуляции называется регулировочной характеристикой АИН.

$$\gamma = \frac{\tau_{\text{M}}}{T_{\text{M}}} = \frac{E_{\text{y}}}{E_{\text{OII}}} = 0...1$$

Регулировочные характеристики **АИН**

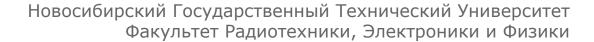
- Глубина модуляции влияет также и на величину остальных гармоник спектра выходного напряжения, т.е. на качество выходного напряжения.
- Оно оценивается следующими **коэффициентами** гармоник (где k Кмер гармоники):


ПАРАМЕТРЫ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ

2. Кратность частот опорного и модулирующего сигналов

Спектр выходного напряжения АИН с ШИМ

- На практике стараются увеличить кратность, чтобы сместить гармоники в область высоких частот и более эффективно использовать фильтрующие свойства нагрузки.
- По сути дела данный параметр ШИМ влияет не на качество выходного напряжения, а на качество выходного тока или выходной энергии.



Ограничения на Кр:

• «Сверху» - с увеличением кратности возрастают и коммутационные потери в АИН, снижается его КПД.

Тип ключей	f_{\max} , (к Γ ц)
MOSFET	2050
IGBT	120
GTO	0,51

• «Снизу» - при **Кр < 10** гармоники низкочастотной части первой комбинационной группы начинают «наплывать» на первую гармонику со своим фазовым сдвигом и тем самым приводят к нарушению линейности регулировочной характеристики АИН.

И. А. Баховцев

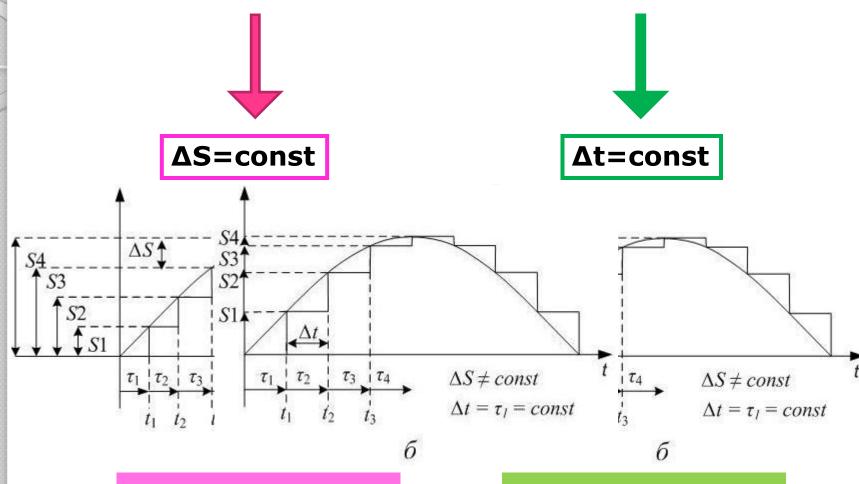
1.4. ПРЕДСТАВЛЕНИЕ ГАРМОНИЧЕСКОГО СИГНАЛА В МПСУ

1. МС задает основные выходные характеристики АИН. => К МС - жесткие требования. => При разработке МПСУ АИН качественное формирование МС – важная задача.

2. Микропроцессорные (цифровые) устройства – дискретные по времени и амплитуде. => Дискретный характер имеют формируемые ими

временные функции.

3. <u>Пример</u>: генератор пилообразного сигнала. Его цифровой аналог – суммирующий 2-й счетчик. Графическое изображение его цифрового кода – линейная ступенчатая функция.


В МПСУ любой непрерывный сигнал заменяется соответствующей ступенчатой функцией.

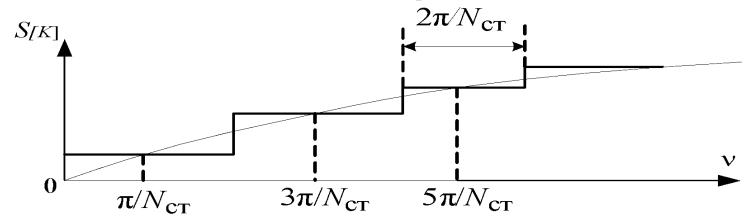
4. В общем случае дискретность формируемого сигнала по амплитуде определяется разрядностью ШД МП, а по времени — периодом высокочастотных тактовых импульсов.

Однако,

В МПСУ (ВП) дискретизацию непрерывной функции во времени совмещают с процессами, протекающими в объекте управления, – с периодом дискретности его работы.

1.4.2. Ступенчатая аппроксимация синусоидального сигнала

В силовых устройствах


В системах управления

Проблемы:

- 1. Первая гармоника ступенчатой функции может отличаться от исходного сигнала как по фазе, так и по амплитуде.
- 2. В спектре ступенчатой функции помимо основной гармоники присутствуют и высокочастотные составляющие.
- 3. Бесконечное число ступенек ($N_{\rm cr}$) нереализуемо.

Как выбрать $N_{\rm cr}$? $K_{\Gamma} = \sqrt{\frac{2}{N_{\rm cr}}} -1$

Решение 1-ой проблемы:

$$N_{\rm CT}, K = \overline{0, (N_{\rm CT} - 1)}$$

$$v_0 = \pi / N_{\rm CT}, \Rightarrow S_{[0]} = \sin \frac{\pi}{N_{\rm CT}}$$
 $v_1 = \pi / N_{\rm CT} + 2\pi / N_{\rm CT} = 3\pi / N_{\rm CT}, \Rightarrow S_{[1]} = \sin \frac{3\pi}{N_{\rm CT}}$
 $v_2 = 5\pi / N_{\rm CT}, \Rightarrow S_{[2]} = \sin \frac{5\pi}{N_{\rm CT}}$

В общем виде выражение для амплитуды K-й ступени будет иметь вид:

$$S_{[K]} = \sin \frac{\pi}{N_{\text{CT}}} \cdot (2K+1)$$
 , где $K = \overline{0,(N_{\text{CT}}-1)}$

Продолжение следует!