Коэффициент размножения в бесконечной среде

$$K_{\infty} = \eta \cdot \mu \cdot \varphi \cdot \theta$$

$$K_{\infty} = \frac{\int_{V 0}^{\infty} v(E) \cdot \Sigma_{f}(E) dE dV}{\int_{V 0}^{\infty} \Sigma_{a}(E) dE dV}$$

• Џ - коэффициент размножения на быстрых нейтронах

$$\left(\quad \mu = \frac{\div \grave{e}\tilde{n}\ddot{e}\hat{i} \;\; \acute{a}\tilde{u}\tilde{n}\grave{o}\tilde{o}\tilde{u}\tilde{o} \;\; \acute{a}\acute{e}\grave{o}\tilde{o}\acute{i}\acute{i}\hat{i}\hat{a} \quad \ \ \dot{c}\grave{a}\grave{i}\mathring{a}\ddot{a}\ddot{e}\ddot{y}\grave{p}\grave{u}\grave{e} \quad \ \ \tilde{o}\tilde{n}\ddot{y}\,\acute{i}\grave{e}\mathring{a}\mathring{a} \;\; \ddot{i}\tilde{o}\hat{i}\tilde{a}\grave{a} \quad \ \ \ddot{a}\mathring{a}\ddot{e}\mathring{a}\acute{e}\grave{i}\grave{e}\ddot{y} \quad U^{238}}{\div \grave{e}\tilde{n}\ddot{e}\hat{i} \;\; \acute{a}\tilde{u}\tilde{n}\grave{o}\tilde{o}\tilde{u}\tilde{o} \;\; \acute{a}\acute{e}\grave{o}\tilde{o}\tilde{i}\acute{i}\hat{i}\hat{a} \quad \ \ \check{o}\tilde{i}\ddot{a}\grave{e}\hat{a}\mathring{o}\grave{e}\tilde{o}\tilde{n}\ddot{y} \quad \hat{i}\grave{o} \;\; \ddot{a}\mathring{a}\ddot{e}\mathring{a}\acute{i}\grave{e}\ddot{y} \quad U^{235} \right)$$

- ф вероятность нейтрону избежать резонансного захвата (вероятность нейтрону не поглотиться при замедлении до тепловой энергии)
- О коэффициент теплового использования (вероятность тепловому нейтрону поглотиться в материале ядерного горючего)

• **η** - число вторичных быстрых нейтронов приходящихся на один поглощённый в топливе тепловой нейтрон

$$\eta = rac{\overline{v \Sigma_{\mathbf{f}}}_{\hat{o}\hat{i}\ddot{i}\ddot{e}\grave{e}\hat{a}\hat{i}}}{\overline{\Sigma_{\mathbf{a}}}_{\hat{o}\hat{i}\ddot{i}\ddot{e}\grave{e}\hat{a}\hat{i}}}$$

Баланс нейтронов

(одногрупповое приближение, реактор однородный)

+ Рождение – поглощение – утечка =
$$\frac{dN}{d\tau}$$

$$q - \Sigma_a \cdot \Phi - div \mathbf{j} = \frac{dN}{d\tau}$$

$$\dot{\mathbf{j}} = -D\nabla\Phi$$
 ; D - êîýôôèöèáí ò äèôôóçèè $D = \frac{1}{3\Sigma_{tr}}$; $\Sigma_{tr} = \Sigma_{S} \cdot (1 - \overline{\mu})$; $\overline{\mu} = \frac{2}{3A}$

$$D\Delta\Phi - \Sigma_a \cdot \Phi + q = \frac{dN}{d\tau}$$

$$D\Delta\Phi - \Sigma_a \cdot \Phi + \nu \Sigma_f \cdot \Phi = \frac{dN}{d\tau}$$

$$K_{\infty} = \frac{\int_{V_0}^{\infty} v(E) \cdot \Sigma_f(E) dE dV}{\int_{V_0}^{\infty} \Sigma_a(E) dE dV} = \frac{v \Sigma_f}{\Sigma_a}$$

$$D\Delta\Phi - \Sigma_a \cdot \Phi + K_{\infty} \cdot \Sigma_a \cdot \Phi = \frac{dN}{d\tau}$$

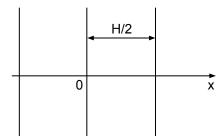
В стационарном случае (реактор критический) $\frac{dN}{d\tau} = 0$

$$D\Delta\Phi + (K_{\infty} - 1) \cdot \Sigma_a \cdot \Phi = 0$$
èëè

$$\Delta \Phi + \frac{(K_{\infty} - 1)}{L^2} \cdot \Phi = 0, \quad \tilde{a} \ddot{a} \quad L^2 = \frac{D}{\Sigma_a} - \hat{e} \hat{a} \dot{a} \ddot{a} \dot{b} \dot{a} \dot{b} \ddot{a} \ddot{e} \dot{u} \quad \ddot{a} \dot{e} \hat{o} \hat{o} \dot{c} \dot{e} \dot{e}$$

èëè

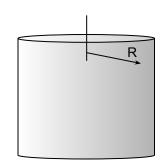
$$\Delta \Phi + B^2 \cdot \Phi = 0$$
, ã
äå $B^2 = \frac{(K_{\infty} - 1)}{L^2} - \hat{e}\hat{a}\hat{a}\ddot{a}\delta\hat{a}\delta\hat{a}\hat{b}\hat{a}\delta\hat{a}\hat{b}\hat{a}\hat{b$


волновое уравнение

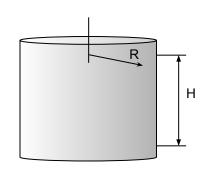
Ãðàiè÷iîå óñëiâèå -
$$\Phi(R_{\tilde{a}\tilde{a}}) = 0$$

1. Сферический реактор

$$\begin{split} \frac{1}{r^2}\frac{d}{dr}r^2\frac{d\Phi}{dr} + \alpha^2\cdot\Phi &= 0, \quad \text{iîañòàiîaê} \quad \text{à} \ \Phi = f/r \\ \frac{d^2f}{dr^2} + \alpha^2\cdot f &= 0 \ \Rightarrow \ \varPhi(r) = C_1\cdot\frac{\sin(\alpha\cdot r)}{r} + C_2\cdot\frac{\cos(\alpha\cdot r)}{r} \\ \text{èç oñeiâèÿ} \ \varPhi(r) &< \infty, \quad \text{ñeåaóàò } \tilde{N}_2 = 0 \\ \text{èç ãðàiê÷iîaî} \quad \text{óñeiâèÿ} \ \varPhi(R) = C_1\cdot\frac{\sin(\alpha\cdot R)}{R} = 0, \quad \text{ñeåaóàò } \sin(\alpha\cdot R) = 0 \\ \text{èëè} \quad \alpha_n\cdot R = \pi\cdot(n+1), \quad n = 0,1,2,\dots\infty; \quad \alpha_0 = \frac{\pi}{R} \\ \hat{\text{lêîi÷àòåeü}} \quad \text{îî} \quad \varPhi(r) = C_1\cdot\frac{\sin(\frac{\pi}{R}\cdot r)}{r} \\ \hat{\text{Eðèòè÷åñeî}} \quad \text{å óñeiâèa}, \quad B^2 = \alpha_0^2 \quad \Rightarrow R_{\delta\delta} = \frac{\pi}{B} = \frac{\pi\cdot L}{\sqrt{K_\infty-1}} \end{split}$$


$$\tilde{A}$$
ðàíè÷íîå óñëîâèå - $\Phi\left(\pm\frac{H}{2}\right)=0$ 2. Плоский реактор

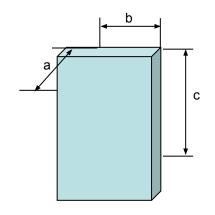
$$\begin{split} \frac{d^2\Phi}{dx^2} + \alpha^2 \cdot \Phi &= 0, \\ \Phi(r) = C_1 \cdot \cos(\alpha \cdot x) + C_2 \cdot \sin(\alpha \cdot x) \\ \text{èç ốnẽiâèÿ něiìåòðèè} \quad \tilde{N}_2 = 0 \\ \text{èç ãðàiê÷íîãî} \quad \text{ónẽiâèÿ} \quad \Phi(H \, / \, 2) = C_1 \cdot \cos(\alpha \cdot H \, / \, 2) = 0, \text{ nĕåäóåò} \\ \alpha_n \cdot H \, / \, 2 = \pi \, / \, 2 \cdot (n+1), \quad n = 0, 1, 2, \dots \infty; \quad \alpha_0 = \frac{\pi}{H} \\ \hat{\text{lêii÷àòåëü}} \quad \text{îi} \quad \Phi(r) = C_1 \cdot \cos(\frac{\pi}{H} \cdot x) \\ \hat{\text{Eðèòè÷ånêî}} \quad \text{å ónĕiâèå} \quad H_{\hat{e}\hat{o}} = \frac{\pi}{B} = \frac{\pi \cdot L}{\sqrt{K_\infty - 1}} \end{split}$$


Ã
ðàíè÷íîå óñëîâèå -
$$\Phi(R_{\tilde{a}\tilde{o}})=0$$

3. Цилиндрический реактор

Ã
ðàíè÷íûå óñëîâèÿ - $\Phi(R,z) = \Phi(r,\pm H/2) = 0$; $\nabla_r \Phi(0,z) = \nabla_z \Phi(r,0) = 0$

4. Цилиндрический реактор конечной высоты

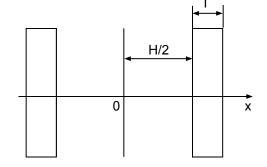

$$\begin{split} &\frac{1}{r}\frac{d}{dr}r\frac{d\Phi}{dr}+\frac{d^2\Phi}{dz^2}+\alpha^2\cdot\Phi=0,\\ &\ddot{\operatorname{I}}\acute{\operatorname{o}}\ddot{\operatorname{n}}\dot{\operatorname{o}}\ddot{\operatorname{u}}\Phi(r,z)=G(r)\cdot F(z)\ \dot{\operatorname{e}}\ \alpha^2=\alpha_r^2+\alpha_z^2. \ \dot{\operatorname{O}}\ddot{\operatorname{a}}\ddot{\operatorname{a}}\dot{\operatorname{a}},\\ &\frac{1}{r}\frac{d}{dr}r\frac{dG}{dr}+\alpha_r^2\cdot G=0, \ G(r)=0, \ G(0)<\infty \\ &\frac{d^2F}{dz^2}+\alpha_z^2\cdot F=0, \ F(\pm H/2)=0 \end{split}$$

Đåøåíèÿ,

$$\begin{split} G(r) &= C_1 \cdot J_o(\alpha_r \cdot r) + C_2 \cdot N_0(\alpha_r \cdot r) \\ F(r) &= C_3 \cdot \cos(\alpha_z \cdot z) + C_4 \cdot \sin(\alpha_z \cdot z) \\ \hat{\mathbf{I}} \hat{\mathbf{e}} \hat{\mathbf{i}} \hat{\mathbf{e}} \hat{\mathbf{a}} \hat{\mathbf{o}} \hat{\mathbf{a}} \hat{\mathbf{e}} \hat{\mathbf{u}} & \text{if} \quad \Phi(r) = C_1 \cdot J_o(\alpha_r \cdot r) \cdot \cos(\alpha_z \cdot z), \quad \alpha_r = \frac{2.405}{R}, \quad \alpha_z = \frac{\pi}{H} \\ \hat{\mathbf{E}} \hat{\mathbf{o}} \hat{\mathbf{e}} \hat{\mathbf{e}} \hat{\mathbf{e}} \hat{\mathbf{e}} \hat{\mathbf{a}} \hat{\mathbf{o}} \hat{\mathbf{e}} \hat{\mathbf{e}} \hat{\mathbf{a}} & B^2 = \left(\frac{2.405}{R}\right)^2 + \left(\frac{\pi}{H}\right)^2 \end{split}$$

5. Реактор в форме параллепипеда

Ãðàíè÷íûå óñëîâèÿ -
$$\Phi(\pm a, y, z) = \Phi(x, \pm b, z) = \Phi(x, y, \pm c) = 0$$


$$\frac{d^2\Phi}{dx^2} + \frac{d^2\Phi}{dy^2} + \frac{d^2\Phi}{dz^2} + \alpha^2 \cdot \Phi = 0$$

Ϊιποόσιὰς êàê â ιδάαιαοὐαὶ πεό÷ὰα(ðὰςαἀεςς ιἀδαὶαιίνα), ιιεό÷ὰαὶ ιêιί÷ὰοἀευ ιῖ
$$\Phi(x,y,z) = C \cdot \cos(\alpha_x \cdot x) \cdot \cos(\alpha_y \cdot y) \cdot \cos(\alpha_z \cdot z), \quad \alpha_x = \frac{\pi}{a}, \quad \alpha_y = \frac{\pi}{b}, \quad \alpha_z = \frac{\pi}{c}$$
 Êðèòè÷ἀπêι å όπειαèα
$$B^2 = \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi}{a}\right)^2$$

<u>Влияние отражателя</u>

(одногрупповое приближение, реактор плоский)

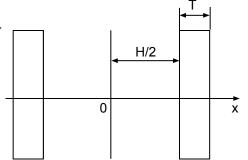
Активная зона	Отражатель
$\Delta\Phi + \frac{(K_{\infty} - 1)}{L_a^2} \cdot \Phi = 0$ $\Delta\Phi + B_a^2 \cdot \Phi = 0$	$\Delta\Phi - \frac{1}{L_{r}^{2}} \cdot \Phi = 0$ $\Phi - B_{r}^{2} \cdot \Phi = 0$
	·

$$\Phi_a(x) = C \cdot \cos(B_a \cdot x)$$

Граничные условия

$$\Phi_a\left(\frac{H}{2}\right) = \Phi_r\left(\frac{H}{2}\right), \quad D_a\left(\frac{d\Phi_a}{dx}\right)\Big|_{x=H/2} = D_r\left(\frac{d\Phi_r}{dx}\right)\Big|_{x=H/2}$$

$$D_a \cdot B_a \cdot tg \left(B_a \cdot \frac{H}{2} \right) = D_r \cdot B_r \cdot cth \left(B_r \cdot T \right)$$

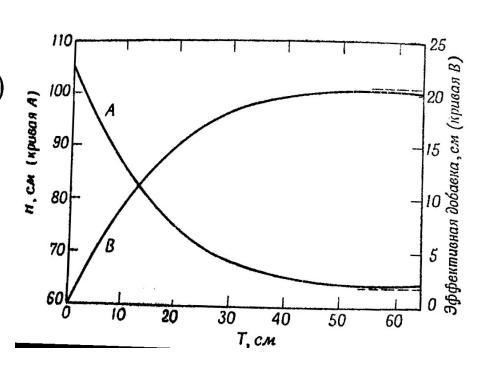

<u>Эффективная добавка отражателя</u> (одногрупповое приближение, реактор плоский)

$$\delta = \frac{H_0}{2} - \frac{H}{2}, \quad H_0 - \text{eðeòe} \div \text{añee} \text{ eðaçiað ðaaeòiða áaç iððaæaòaeÿ}$$

Поскольку в крит.реакторе
$$B_a^2 = \left(\frac{\pi}{H_0}\right)^2$$
 $(B_a^2 = \frac{K_{\infty} - 1}{L^2})$

$$B_a^2 = \left(\frac{\pi}{H_0}\right)^2$$

$$(B_a^2 = \frac{K_{\infty} - 1}{L^2})$$

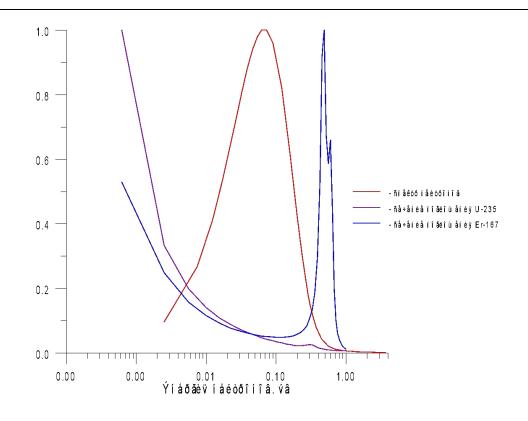


$$\frac{H}{2} = \frac{\pi}{2 \cdot B_a} - \delta, \quad \text{iianoàâèâ} \quad \text{â iðåäûäóùåå} \quad \text{óðàâíåíèå} \quad \text{iieó÷èì}$$

$$D_a \cdot B_a \cdot tg \left(\frac{\pi}{2} - B_a \cdot \delta\right) = D_r \cdot B_r \cdot cth \left(B_r \cdot T\right)$$

èëè
$$D_a \cdot B_a \cdot \tilde{n}tg(B_a \cdot \delta) = D_r \cdot B_r \cdot cth(B_r \cdot T)$$

èëè
$$\delta = \frac{1}{B_a} \cdot arctg \left(\frac{D_a \cdot B_a}{D_r \cdot B_r} \cdot th(B_r \cdot T) \right)$$



Расчёт сечений для тепловых нейтронов

$$n(E) \approx M(E) = \tilde{N} \cdot \frac{2}{\sqrt{\pi}} \sqrt{\frac{E}{kT_i}} \exp\left(-\frac{E}{kT_i}\right), \quad \text{ide} \quad \int_{0}^{\infty} M(E, kT_i) dE = 1$$

 $T_{i} = T_{\varphi \hat{a}\hat{i}} \cdot \left(1 + A \frac{\sum_{a}^{T}}{\xi \sum_{s}}\right)$

$$\sigma_{\dot{a}}(E) \approx \frac{1}{V} = \frac{1}{\sqrt{E}}, \quad \text{o.a.} \quad \frac{\sigma_{\dot{a}}(E)}{\sigma_{\dot{a}}(E_0)} = \frac{\sqrt{E_0}}{\sqrt{E}} \quad \text{e\"ee} \quad \sigma_{\dot{a}}(E) = \sigma_{\dot{a}}(E_0) \frac{\sqrt{E_0}}{\sqrt{E}}$$

 $|\sigma_s^T - const$

Расчёт сечений для тепловых нейтронов

$$\overline{\sigma_a} \cdot \overline{\Phi^T} = \int\limits_{E_{\bar{a}\bar{o}}}^{E_{\bar{a}\bar{o}}} \sigma(\mathring{A}) \cdot \Phi(E) dE \quad ; \quad \overline{\Phi^T} = \int\limits_{0}^{E_{\bar{a}\bar{o}}} \Phi(E) dE = \int\limits_{0}^{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\text{III}}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{a}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) dE / \underbrace{\mathbf{v} \cdot n(E) dE}_{E_{\bar{o}\bar{o}}} \mathbf{v} \cdot n(E) d$$

Взяв интегралы получим:

$$\overline{\sigma_a} \approx \frac{\sqrt{\pi}}{2} \sigma(\mathring{A}_0) \sqrt{\frac{\mathring{A}_0}{\mathring{A}_i}} \quad \text{è\"ee} \quad \overline{\sigma_a} \approx \frac{\sqrt{\pi}}{2} \sigma(\mathring{A}_0) \sqrt{\frac{T_0}{T_i}} \quad \text{\"i\^n\^e\^i\"e\"u\'e\'o} \qquad E = kT$$

$$\hat{\text{I\'a\^u}} \div \hat{\text{I\^i}} \quad \mathring{A}_0 = 0.0253 \, \text{\'y\^a} \rightarrow \quad V_0 = 2200 \, \text{\i/\^n\^a\^e} \quad \rightarrow T_0 = 300 \, \hat{\text{E}}$$

Сечения для тепловых нейтронов при E_0 =0.0253эв

	Α	Σs	Σα	Σf	ν												
Н	1	20.4	0.33200	0.000	0.00	GA	70	6.5	2.90000	0.000	0.00	AU 97	197	5.0	98.80000	0.000	0.00
D	2	3.4	0.00053	0.000	0.00	ZR	91	6.4	0.19000	0.000	0.00	PB	207	11.4	0.17000	0.000	0.00
HE	4	0.8	0.00700	0.000	0.00	NB	93	6.2	1.15000	0.000	0.00	BI	209	9.0	0.03300	0.000	0.00
HE3	3	1.9	5327.00000	0.000	0.00	MO	96	5.8	2.65000	0.000	0.00	TH28	228	0.0	123.30000	0.300	3.00
HE4	4	0.8	0.00000	0.000	0.00	RH	103	5.0	150.00000	0.000	0.00	TH29	229	0.0	84.50000	30.500	2.08
LI	7	1.1	70.54000	0.000	0.00	RH05	105	4.1	16000.00000	0.000	0.00	TH30	230	0.0	23.20000	0.001	3.00
LI6	6	0.7	940.00000	0.000	0.00	CD	113	5.6	2520.00000	0.000	0.00	TH31	231	0.0	0.00000	0.000	0.00
LI7	7	1.1	0.03700	0.000	0.00	CD13	113	23.0	20100.00000	0.000	0.00	TH32	232	12.7	7.40000	0.000	3.00
BE	g	6.1	0.00920	0.000	0.00	IN15	11 5	3.0	205.00000	0.000	0.00	TH20	232	12.7	7.40000	0.000	0.00
В	11	4.3	760.00000	0.000	0.00	XE35	135	300000.0	2650000.00000	0.000	0.00	TH33	233	0.0	1515.00000	15.000	3.00
B10	10	2.1	3836.00000	0.000	0.00	SM49	149	200.0	42100.00000	0.000	0.00	PA31	231	10.0	201.00000	0.012	3.00
B11	11	4.9	0.00550	0.000	0.00	SM51	151	22.0	15000.00000	0.000	0.00	PA32	232	0.0	1460.00000	700.000	3.00
C	12	4.7	0.00340	0.000	0.00	EU	152	8.0	4600.00000	0.000	0.00	PA33	233	14.0	41.00000	0.100	3.00
N	14	10.6	1.87500	0.000	0.00	EU51	151	8.5	9200.00000	0.000	0.00	PA4M	234	0.0	0.00000	0.000	0.00
0	16	3.8	0.00027	0.000	0.00	EU53	153	7.5	300.00000	0.000	0.00	PA4G	234	0.0	0.00000	0.000	0.00
F	19	4.0	0.00950	0.000	0.00	GD	157	165.0	49400.00000	0.000	0.00	U232	232	15.0	148.00000	75.200	3.13
NA	23	3.2	0.53000	0.000	0.00	G D 5 5	155	60.0	61000.00000	0.000	0.00	U233	233	8.2	574.20000	528.400	2.50
MG	24	3.4	0.06300	0.000	0.00	G D 57	157	1000.0	254000.00000	0.000	0.00	U234	234	12.0	100.00000	0.650	3.00
AL	27	1.5	0.23000	0.000	0.00	DY64	164	260.0	2700.00000	0.000	0.00	U235	235 236	13.8	681.90000 5.20000	583, 500 0, 000	2.44
SI	28	2.2	0.16000	0.000	0.00	ER ER40	167	5.0	162.00000	0.000	0.00	U236 U237	230	0.0 0.0	380.00000	0.350	0.00 3.00
Р	31	4.1	0.18000	0.000	0.00	ER62 ER64	162	5.0 9.0	29.00000 2.40000	0.000 0.000	0.00 0.00	U238	238	8.0	2.71000	0.000	0.00
S	32	1.0	0.52000	0.000	0.00	ER66	164 166	6.0	38.00000	0.000	0.00	U38	238	8.0	2.71000	0.000	0.00
CL	35	16.0	34.20000	0.000	0.00	ER67	167	4.0	646.00000	0.000	0.00	U239	239	0.0	36.00000	14.000	3.00
AR	40	0.6	0.67800	0.000	0.00	ER68	168	5.0	2.10000	0.000	0.00	NP6M	236	0.0	0.00000	0.000	0.00
К	39	1.5	2.10000	0.000	0.00	ER70	170	2.0	5.00000	0.000	0.00	NP6G	236	0.0	0.00000	2500.000	3.00
CA	40	2.6	0.43000	0.000	0.00	LU	175	6.7	83.00000	0.000	0.00	NP37	237	0.0	169.00000	0.019	3.00
Τl	48	4.0	6.10000	0.000	0.00	LU75	175	6.0	23.00000	0.000	0.00	NP38	238	0.0	0.00000	2070.000	3.00
٧	51	4.9	5.04000	0.000	0.00	LU76	176	34.0	2320.00000	0.000	0.00	NP39	239	0.0	45.00000	1.000	3.00
CR	52	3.9	3.20000	0.000	0.00	HF	179	4.4	107.00000	0.000	0.00	NPOM	240	0.0	0.00000	0.000	0.00
MN	55	2.2	13.20000	0.000	0.00	W	184	5.7	18.30000	0.000	0.00	NPOG	240	0.0	0.00000	0.000	0.00
FE	56	11.4	2.55000	0.000	0.00	W180	180	5.3	3.50000	0.000	0.00	PU36	236	0.0	0.00000	162.000	3.00
CO	59	6.7	37.20000	0.000	0.00	W182	182	7.0	20.70000	0.000	0.00	l _{PU37}	237	0.0	0.00000	2200.000	3.00
NI	59	17.3	4.40000	0.000	0.00	W183	183	7.3	10.20000	0.000	0.00	PU38	238	24.0	564.00000	16.500	2.90
CU	64	7.9	3.79000	0.000	0.00	W184	184	6.3	1.70000	0.000	0.00	PU39	239	9.5	1012.00000	741.700	2.89
ZN	65	4.2	1.10000	0.000	0.00	W186	186	3.2	37.80000	0.000	0.00	PU 40	240	1.5	287.00000	0.050	2.85

Нестационарное уравнение баланса нейтронов (одногрупповое приближение, реактор однородный)

$$\frac{dN}{d\tau} = D\Delta\Phi - \Sigma_a \cdot \Phi + \nu \Sigma_f \cdot \Phi$$

$$rac{dN}{d au} = \Delta \Phi + rac{(K_{\infty} - 1)}{L^2} \cdot \Phi$$
 еёе Подставив это сюда получим

В критическом реакторе

$$\Delta\Phi + \frac{(K_{\infty}^0 - 1)}{L_0^2} \cdot \Phi = 0$$

èëè
$$\Delta \Phi + B_0^2 \cdot \Phi = 0 \implies \Delta \Phi = -B_0^2 \cdot \Phi$$

$$\frac{dN}{d\tau} \approx \left(\frac{(K_{\infty} - 1)}{L^{2}} - B_{o}^{2}\right) \cdot \Phi \qquad \frac{1}{v} \frac{d\Phi}{d\tau} = \left(\frac{(K_{\infty} - 1)}{L^{2}} - B_{o}^{2}\right) \cdot \Phi \quad \text{èëè} \quad \frac{d\Phi}{d\tau} = v \cdot \left(\frac{(K_{\infty} - 1)}{L^{2}} - B_{o}^{2}\right) \cdot \Phi$$

Решение с начальным условием $\Phi(0) = \Phi_0$, будет

$$\Phi(\tau) = \Phi_0 \cdot \exp\left(\left(\mathbf{v} \cdot \frac{(K_{\infty} - 1)}{\mathbf{L}^2} - \mathbf{v} \cdot B_o^2\right) \cdot \tau\right), \quad B_0^2 = \frac{(K_{\infty}^0 - 1)}{\mathbf{L}_0^2}, \ \mathbf{L}^2 = \frac{D}{\Sigma_a}$$

Ϊ́οñòü v-const, à $L^2 = L_0^2$, òîãäà

$$\Phi(\tau) = \Phi_0 \cdot \exp\left(\mathbf{v} \cdot \frac{(K_{\infty} - K_{\infty}^0)}{L^2} \cdot \tau\right)$$

Нестационарное уравнение баланса нейтронов

(одногрупповое приближение, реактор однородный)

Ïåðåïèøåì â âèäå,

$$\Phi(\tau) = \Phi_0 \cdot \exp\left(\frac{\tau}{T}\right), \ \text{\"a\"a\'a} \quad T = \frac{L^2}{\mathbf{v} \cdot (K_{\infty} - K_{\infty}^0)} \quad \text{\'e\"e\'e} \quad T = \frac{L^2}{\mathbf{v} \cdot \Delta K_{\infty}}$$

v - nêîðînòü òåïëîâî
aî íåéòðîíà,
$$L^2 = \frac{D}{\Sigma_a}$$
, $D = 1/\Sigma_a$