ЛЕКЦИЯ №1 Введение. Основные понятия химии. Законы стехиометрии.

Поддубная Ольга Владимировна, канд. с.-х. наук, доцент

Тел. (8-0-2233) 59489 кафедра

E-mail:

<u>olga.gorki@mail.ru</u>, <u>kh.baa@mail.ru</u>

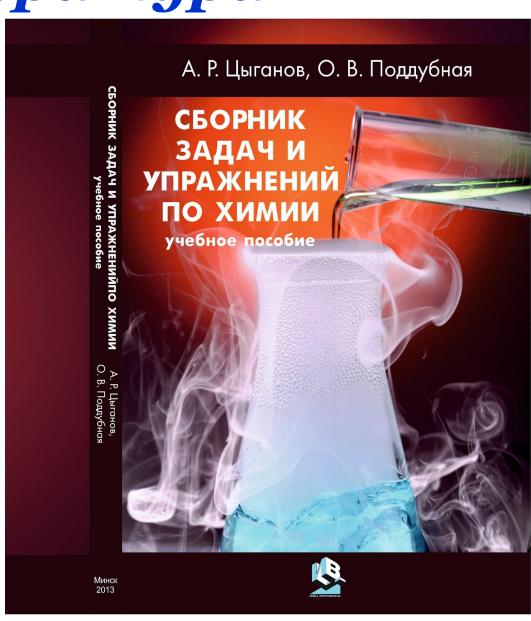
Химия: Учебнометодический комплекс: учебнометодическое пособие / О. В. Поддубная, И. В. Ковалева и др. — Горки: БГСХА, 2014. — 504 с.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГЛАВНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ, НАУКИ И КАДРОВ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Кафедра химии



Учебно-методический комплекс

Для студентов специальности 1-74 02 05 – Агрохимия и почвоведение; 1-74 02 03 – Защита растений и карантин; 1-74 02 04 – Плодоовощеводство

> Горки БГСХА 2014

Цыганов, А. Р. Сборник задач и упражнений по химии: Учеб. пособие / А. Р. Цыганов, О. В. Поддубная. – Минск: ИВЦ Минфина, 2013. -236 c.

Химия. Учебнометодический комплекс: учебнометодическое пособие / О. В. Поддубная, И. В. Ковалева, Е. В. Мохова.

- Горки : БГСХА, 2014.
- -404 c.

• Химия. Общая химия с основами аналитической: учебно-методическое пособие / А. Р. Цыганов [и др.]. — Горки: БГСХА, 2012. — 204 с.

• ISBN 978-985-467-393-6.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГЛАВНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ, НАУКИ И КАДРОВ

Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Кафедра химии

ХИМИЯ

Общая химия с основами аналитической

Рекомендовано Учебно-методическим объединением по образованию в области сельского хозяйства в качестве учебно-методического пособия для студентов учреждений высшего образования, обучающихся по специальностям 1-74 03 01 Зоотехния, 1-74 03 03 Промышленное рыбоводство

> Горки БГСХА 2012

План:

- 1. Химия как наука о веществах и их превращениях. Цели и задачи изучения дисциплины.
- 2. Международная номенклатура неорганических соединений.
- 3. Основные понятия химии.
- 4. Основные стехиометрические законы.
- 5. Химический эквивалент. Закон эквивалентов.

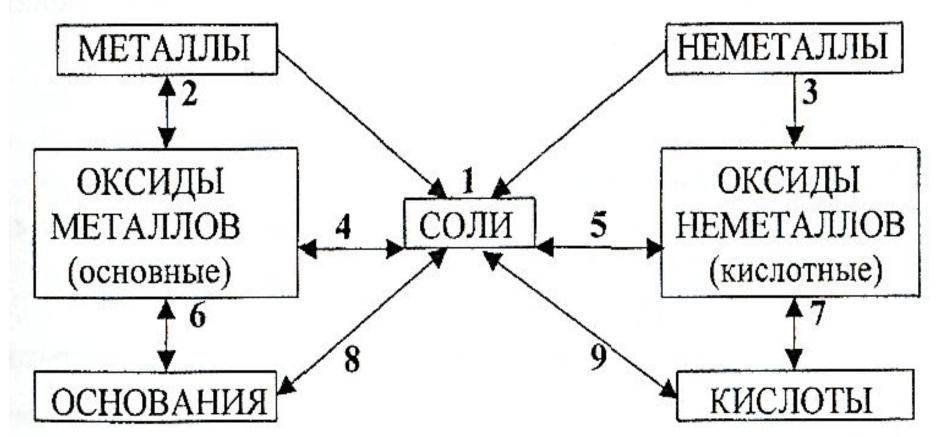
1. Химия как наука о веществах и их превращениях. Цели и задачи изучения дисциплины.

Химия - наука о составе, строении, свойствах и превращениях веществ.

• Цель изучения химии - освоить современные представления о строениях как атомов и молекул, так и вещества в целом, а также об основных законах, управляющих процессами превращения веществ.

2.Международная номенклатура неорганических соединений.

Основой химических веществ являются химические соединения. В настоящее время известно более 20 миллионов химических соединений. Несмотря на столь многочисленный состав, большинство неорганических соединений укладываются в общую схему классификации, которая выглядит следующим образом:


• Металлы и неметаллы простые вещества

- Оксиды
- Основания
- Кислоты
- Соли

сложные вещества

Существует связь между указанными классами, что позволяет получать вещества одного класса из веществ другого класса.

Такая связь называется *генетической*. Ее удобно отобразить в виде блок-схемы:

Формулы и название кислот и

кислотных остатков		
Название кислот	Формулы кислот	Название кислотных
		остатков средних солей
Фтороводородная	HF	Фторид
(плавиковая)		

HBr

HCN

H,S

H,Se

H,CO,

H,SiO,

H₄SiO

H₃AsO

H₃AsO₃

HPO,

H,PO

 \mathbf{HI}

(соляная)

Угольная

Бромоводородная

Циановодородная

Селеноводородная

Метакремниевая

Ортокремниевая

Мышьяковистая

Метафосфорная

Ортофосфорная

Пипо(ли)фосфопная

Мышьяковая

Иодоводородная

Сероводородная

Бромид

Цианид

Сульфид

Селенид

Карбонат

Арсенат

Арсенит

Метасиликат

Ортосиликат

Метафосфат

Ортофосфат

Пипо(ли)фосфат

Иодид

HCI Хлорид Хлороводородная

3.Основные понятия химии

- В химических расчетах используется единица количества вещества моль. Один моль любого вещества содержит число Авогадро $(N_A=6,02\cdot 10^{23})$ частиц, из которых оно состоит.
- Масса одного моль вещества называется *молярной массой (М)*

4.Основные стехиометрические законы

Стехиометрия –

раздел химии, который рассматривает количественные соотношения между реагирующими веществами. Теоретической основой расчетов количественных соотношений между элементами в соединениях или между веществами в уравнениях химических реакций являются стехиометрические законы химии.

4.1. Закон сохранения массы и энергии: (Ломоносов, 1748)

Масса веществ, вступающих в реакцию равна массе веществ, образовавшихся в результате реакции:

$$Ca + Cl_2 \rightarrow CaCl_2$$

$$40 + 71 = 111$$

М.В. Ломоносов связывал закон сохранения массы веществ с законом сохранения энергии. Взаимодействие массы и энергии выражается уравнением А. Энштейна: $E=mc^2$; $c=3\cdot 10^8$ m/c.

Современная формулировка:

В изолированной системе сумма масс (энергий) веществ до химической реакции равна сумме масс (энергий) образовавшихся веществ после реакции.

4.2.Закон постоянства состава (Пруст, 1808)

- Любое сложное вещество молекулярного строение независимо от способа получения имеет постоянный качественный и количественный состав. В природе существуют вещества с молекулярной и кристаллической (ионной) структурой: вещества с постоянным составом дальтониды (H₂O; CO₂);
- вещества переменного состава бертоллиды (от $TiO_{0.7}$ до $TiO_{1.3}$).

4.3. Закон кратных отношений (Дальтон, 1803)

- Атомы в молекуле, а также их массы относятся друг к другу как небольшие целые числа. С: H = 1: 2;
- Если два элемента образуют между собой более одного соединения, то массы одного элемента, приходящиеся на одну и ту же массу другого элемента, относятся между собой как небольшие целые числа.

4.4. Закон простых объёмных отношений (Гей-Люссак, 1808)

• Объёмы вступающих в реакцию газов, а также объёмы газообразных продуктов реакции относятся между собой как небольшие целые числа.

$$N_2 + 3H_2 \leftrightarrow 2NH_3;$$

 $V(N_2) : V(H_2) : V(NH_3) = 1:3:2.$

4.5. Закон Авогадро

- В равных объёмах различных газов при одинаковых условиях (p,t) содержится одинаковое число молекул.
- Следствие 1: Один моль любого газа в нормальных условиях занимает объём
 - **22,4** *л/моль* Vм молярный объём.
- H.у.: p = 1 атм; $101 \text{ к}\Pi a$, $T = 0^{\circ} \text{ C}$; 273 °K.
- Следствие 2: Отношение плотностей двух газов прямо пропорционально отношению их молярных масс: $\rho_1/\rho_2 = M_1/M_2 = D$;
- $D(H_2) = M(газа)/2$; D(возд.) = M(газа)/29

4.6. Закон Менделеева – Клапейрона

$$pV = nRT$$
; $R = 8,314$; если $p = \Pi a, V = m^3$; $R = 0,082$; если $p = aTm, V = л$.

4.7. Объединённый газовый закон.

$$\frac{\mathbf{P} \cdot \mathbf{V}}{\mathbf{T}} = \frac{\mathbf{P_0} \cdot \mathbf{V_0}}{\mathbf{T_0}}$$

5.Химический эквивалент. Закон эквивалентов.

- Эквивалент условная или реальная частица вещества, которая в кислотно- основной реакции соответствует одному катиону H⁺, а в окислительно- восстановительной реакции одному электрону.
- Реальная частица молекула, атом или ион, условная частица определенная часть молекулы, атома или иона.

Фактор эквивалентности (f_{экв}) — доля условной или реальной частицы эквивалента вещества.

$$\mathbf{f}_{_{\mathbf{3KB}}} = ^{1}/_{\mathbf{Z}},$$

где z — степень окисления элемента или число эквивалентности;

$$f_{_{2KR}} \le 1; f_{_{2KR}}(O^{-2}) = \frac{1}{2}$$

М_{экв (х)} – молярная масса эквивалента – это молярная масса 1 моль эквивалента вещества; рассчитывается по формуле

$$\mathbf{M}_{\mathfrak{I}_{(X)}} = \mathbf{M}_{(X)} * \mathbf{f}_{\mathfrak{I}_{KB}}.$$

При вычислении молярных масс эквивалентов веществ необходимо учесть следующее:

- молярная масса эквивалента оксида равна сумме молярных масс эквивалентов кислорода и элемента, входящего в состав оксида;
- молярная масса эквивалента кислоты равна:

$$\mathbf{M}_{_{\mathrm{ЭКВ}}\,(\mathrm{K-Tы})} = \mathbf{M}_{_{\mathrm{(K-Tы)}}\,*} \, \mathbf{f}_{_{\mathrm{ЭКВ}}},$$
 где $\mathbf{f}_{_{\mathrm{ЭКВ}}\,(\mathrm{K-Tы})} = 1/$ число \mathbf{H}^+

• молярная масса эквивалента основания равна:

$$M_{_{3KB}\,(och)}=M_{_{(och)}\,*}\,f_{_{3KB}},$$
 где $f_{_{3KB}\,(och)}=1/$ число OH^-

• молярная масса эквивалента соли равна:

$$M_{_{3KB} (cоли)} = M_{_{(cоли)}} * f_{_{3KB}},$$
 где $f_{_{3KB} (cоли)} = 1/$ (число $Me_{_*}$ ст. ок. Me)

• молярная масса эквивалента сложного вещества не является величиной постоянной, а зависит от химической реакции, в которой принимает участие данное соединение.

Эквивалентные объёмы газов:

$$V_{_{3KB}}(^{1}\!/_{_{2}}H_{_{2}})=11,2$$
 л/моль; $V_{_{3KB}}(^{1}\!/_{_{4}}O_{_{2}})=5,6$ л/моль.

Закон эквивалентов

$$m_1/m_2 = M_{\mathfrak{I} K61}/M_{\mathfrak{I} K62}$$

Спасибо за внимание!