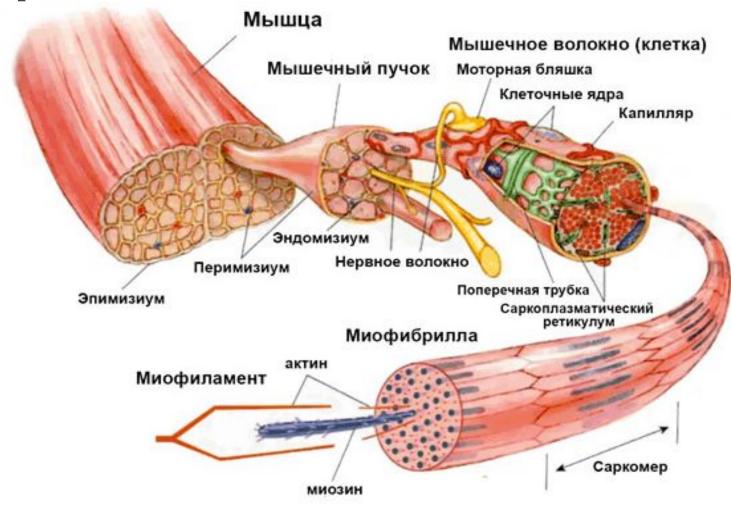

Функциональная анатомия мышечной системы

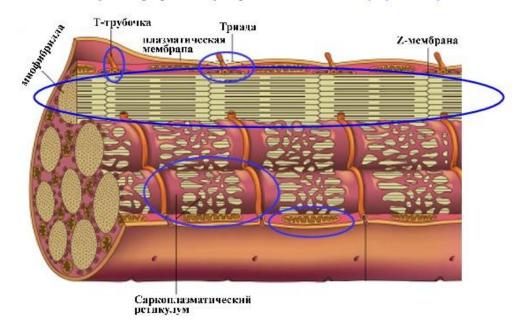
III. <u>МЫШЕЧНАЯ ТКАНЬ</u>

ОСНОВНАЯ ТКАНЬ МЫШЦ, СОСТАВЛЯЮЩАЯ ДО 40% МАССЫ ТЕЛА. ЕЕ КЛЕТКИ СОЕДИНЕНЫ СОЕДИНИТЕЛЬНОЙ ТКАНЬЮ.


НАЗВАНИЕ	Поперечно- полосатая скелетная	Поперечно- полосатая сердечная	гладкая
СТРОЕНИЕ	Длинные клетки, содержат не сколько ядер, со стоят из волокон	Клетки разветвляются на концах	Веретеновидные клетки, собранные в пучки
ФУНКЦИИ	Обе спечив ает дв ижение	Обеспечивает движение сердечной мышцы	Движение гладких мышц, передвижение содержимого трубчатых органов
РИСУНОК		P	t4WEB r

Строение мышечного волокна

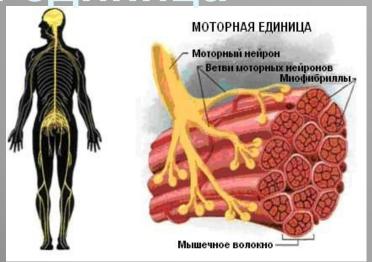
- 1. Сарколемма клеточная мембрана.
- 2. Саркоплазма внутриклеточная жидкость. В ней располагаются клеточные органеллы
- 3. Т трубочки (поперечные трубочки, Т система)
- 4. Продольные трубочки и цистерны

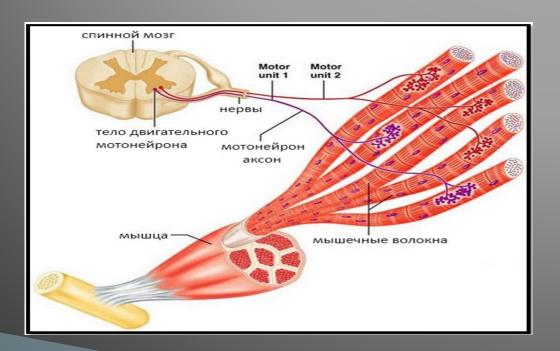

Строение мышечного волокна

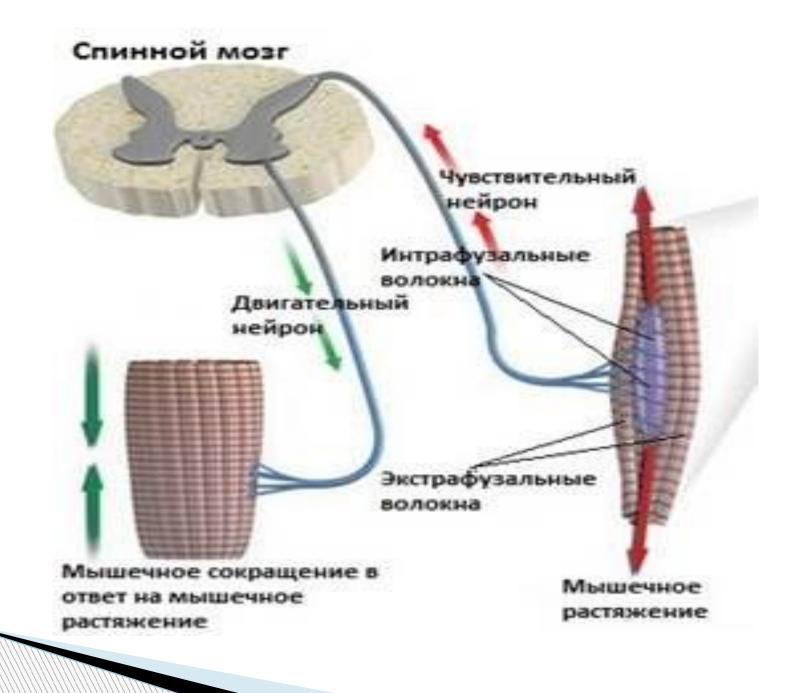
Строение мышечного веретена

СТРОЕНИЕ МЫШЕЧНОГО ВОЛОКНА

- миофибриллы, состоящие из саркомеров;
- саркоплазматический ретикулум депо Са++;
- митохондрии;
- плазматическая мембрана мышечного волокна имеет впячивания (продольные *Т-трубочки*), которые вместе с цистернами саркоплазматического ретикулума образуют *Т-системы* (триады).

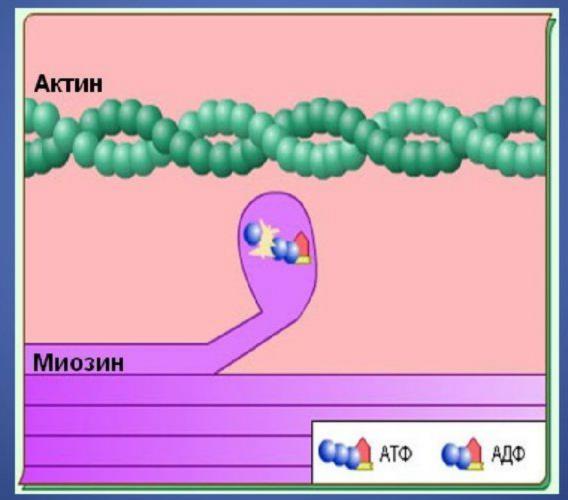

Мышечное сокращение


- Сокращение мышц происходит под воздействием нервных импульсов, которые активируют нервные клетки спинного мозга мотонейроны, ответвления которых аксоны подведены к мышце.
- □ Каждый мотонейрон управляет группой мышечных клеток. Такие группы получили название нейромоторные единицы, благодаря которым человек может задействовать в работе часть мышцы. Поэтому, мы можем сознательно контролировать скорость и силу сокращения мышц


Двигательная единица

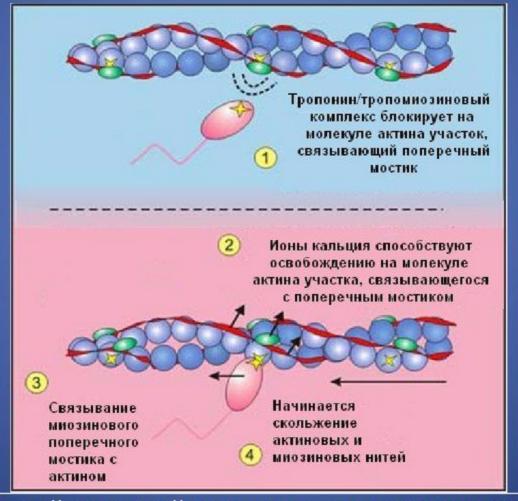
Двигательная единица мышцы

- основной элемент нервно мышечного аппарата мышцы Включает:
- мотонейрон спинного мозга;
- 🛮 аксон;
- □ мышечное волокно



Механизм мышечного сокращения

□Раздражение рецептора — возникновение потенциала действия — проведение его вдоль клеточной мембраны — по Т-системе- выход ионов Са в саркоплазму— формирование актомиозинового (сократительного) комплекса (распад АТФ) — скольжение нитей актина и миозина (укорочение) — прекращение возбуждения — распад актомиозинового (сократительного)комплекса (распад АТФ) — «кальциевая помпа» — расслабление.


Механизмы сокращения и расслабления мышечного волокна. Энергетика мышечного сокращения

Взаимодействие актиновых и миозиновых нитей (микрофиламентов), образование поперечного мостика

Механизмы сокращения и расслабления мышечного волокна. Энергетика мышечного сокращения

Переход в мышце от состояния расслабления к сокращению

Пути ресинтеза АТФ

1. Креатинфосфокиназный путь

(AДФ + креатинфосфат = AТФ+креатин)

2. Гликолитический путь (анаэробный ресинтез)

 $(AД\Phi + гликоген = AT\Phi + молочная кислота)$

3. Окислительное фосфорилирование (аэробный ресинтез)

(АДФ+липиды =АТФ+мочевина)

Анаэробный ресинтез АТФ

Два пути:

- 1. Креатинфосфатный ресинтез АТФ
- Гликолитический ресинтез АТФ

1. Креатинкиназный путь

- 1.Максимальная мощность 900-1100 кал/мн-кг
- 2.Время развертывания 1-2 сек
- 3. Время работы с максим. скоростью 8-10 сек

2. Гликолитический путь (гликолиз)

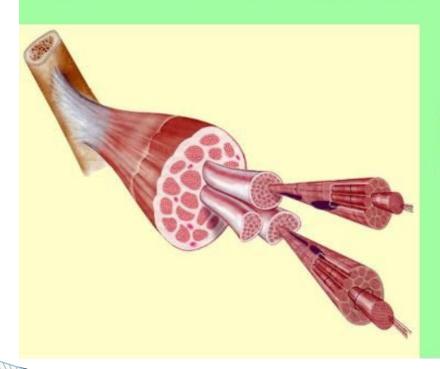
$${ \left[A Д \Phi + гликоген \right] }$$
 ${ A T \Phi + молочная кислота }$

- 1. Максимальная мощность 750-850 кал/мин-кг
- 2. Время развертывания 20-30 сек
- 3. Время работы с максим. мощностью 2-3 мин

АЭРОБНЫЙ ПУТЬ РЕСИНТЕЗА АТФ

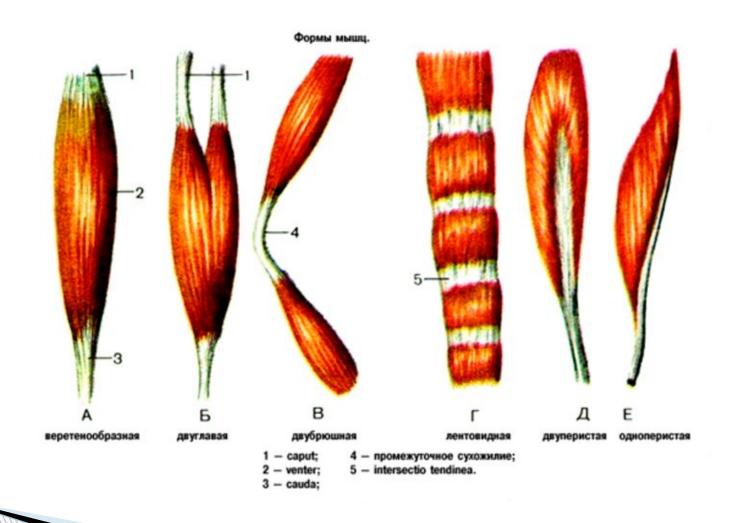
- В ходе тканевого дыхания от окисляемого вещества отнимается 2 атома водорода и присоединяется к кислороду с образованием воды. За счет энергии происходит ресинтез АТФ из АДФ.
- В процесс вовлекаются углеводы, жиры и аминокислоты.
- □ Активаторы процесса: АДФ и углекислый газ
- □ Максимальная мощность: 350-450 кал/мин кг
- □ Время развертывания 3-4- мин
- □ Время работы с мах. мощностью десятки минут

Процесс	Время восстановления
Восстановление О2-запасов в организме	10-15 с
Восстановление алактатных анаэробных резервов в мышцах	2-5 мин
Оплата алактатного О2-долга	3-5 мин
Устранение молочной кислоты	30-90 мин
Оплата лактатного О2-долга	30-90 мин
Ресинтез внутримышечных запасов гликогена	12-48 ч
Восстановление запасов гликогена в печени	12-48 ч
Усиление индуктивного синтеза ферментных и структурных белков	12-72 ч


Зона мощности	Продолжитель ность работы	О2-запрос, л\мин	О2- долг, Л\мин.	Основные пути ресинтеза	Основные источники энергии	Продолжительность восстановительного периода
	Анаэроб	но-алакт	атная н	направле	нность	
Максимальная	до 30-45 с	7-14	6-12	КрФ- реакция, гликолиз	АТФ, КрФ, гликоген	до 1 ч
	Aı	наэробно-	гликолі	итическая	I	
Субмаксимальная	30 – 250 c	20-40	20 (50-90%)	Гликолиз, КрФ	КрФ, гликоген, липиды	2-5 ч
	Смешанная анаэробно-аэробная					
Большая	5-50 мин	50-150	20 (30%)	Аэробное окисление, гликолиз	Гликоген, липиды	5-24 ч
Аэробная направленность						
Умеренная	Более 1 ч	500-1500	5	Аэробное окисление	Гликоген, липиды	Более 24 ч

Характеристика путей ресинтеза АТФ

Пути ресинтеза	Мощность ккал/кг мин	Метаболичес кая емкость	Подвижность (время включения)	Эффективност ь использовани я %
Креатинкиназный путь	900	6-7 сек	2 сек	70- 80
Гликолиз	750	40 сек	10-20 сек	4
Окислительное фосфорилирование	300-400	неограничено	3-5 мин	50


Строение мышц

Мышца — орган, состоящий из мышечной ткани, плотной соединительной ткани, кровеносных сосудов и нервов, и выполняющий функцию сокращения.

ФОРМА МЫШЦ

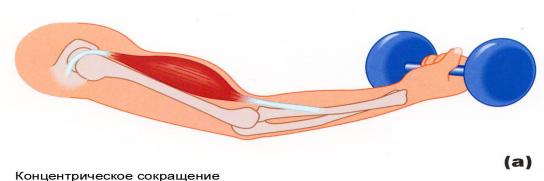
Скелетные мышечные волокна

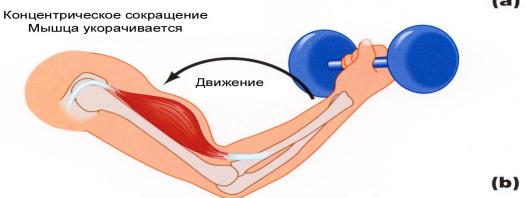
- Быстро возбуждаются, мощно сокращаются, но не могут находится долго в тонусе. В них много Кф, гликогена, хорошо развит СР, который богат ионами кальция (поверхностные мышцы).
- Пути ресинтеза АТФ: анаэробные
- Источники энергии: Кф, гликоген мышц, глюкоза
- Бег на 60, 100 м, плаванье на 50 м

Белые мышечные волокна

- Менее возбудимы, медленнее сокращаются, но долго находятся в тонусе (глубокий мышечный слой)
- В них мало углеводов, Кф не используется, много митохондрий.
- Основной путь ресинтеза АТФаэробный
- Источники энергии жирные кислоты и глюкоза, приносимая кровью
- Бег на 10000 и более,
 лыжные гонки на 30, 50 км.
 велогонки и т.д.

Красные мышечные волокна


Характеристика	Тип волокон				
Характеристика	MC	БСа	БСб		
Включение в работу	На выносливость, малая интенсивность	Кратковременная высокая интенсивность			
Количество волокон на мотонейроне	10-180	300-600	300-800		
Порог возбуждения	Низкий	Высокий	Высокий		
Размеры двигательного нейрона	Малые	Большие	Большие		
Размеры и количество миофирилл	Малые	Большие	Большие		
Сеть капилляров	Большая	Средняя	Низкая		
Саркоплазматический ретикулум	Низкое	Высокое	Высокое		
Митохондрии	Много	Много	Много		
Запасы миоглобина	Большие	Средние	Малые		
Активность ферментов:		D	D		
АТФ-азы миозина	Низкая Высокая	Высокая Высокая	Высокая Низкая		
митохондрий гликолиза	Низкая	Высокая	Высокая		


Режимы и виды сокращения мышц

Режимы мышечного сокращения

- изотонический режим в данном случае выделяют два тиг сокращения:
- 1)мышца находится в состоянии постоянного тонуса, мышца одного конца закреплена, с другого конца свободно сокращаетс нагрузка на мышцу отсутствует (работа мышцы языка);
- 2) на мышцу оказывается нагрузка, при этом длина мышци изменяется, а напряжение остается постоянным (в чистом виде тако режим практически не встречается);
- изометрический режим мышца находится в состояни напряжения, при этом длина ее не изменяется (скольжения актиновых миозиновых нитей не происходит), так как мышца закреплена с обок концов (статическая работа);
- ауксотонический (смешанный) режим длина и напряжени мышцы изменяются, мышца сокращается (выполнение динамической работы.)

Изометрическое сокращение Сокращение мышцы без движения

Эксцентрическое сокращение Мышца удлиняется

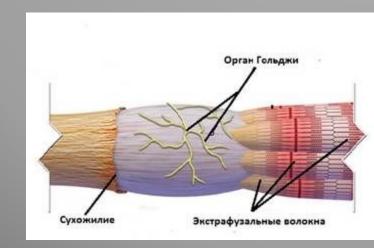
Роль нервной системы в регуляции движений

- Нервная система центр контроля и система внутренней связи. Координированные движения невозможны без контроля со стороны нервной системы.
- Состоит из центральной нервной системы (ЦНС) и периферической нервной системы (ПНС)

Регуляция движения

Осуществляется участием проприорецепторов - рецепторы, собирающие информацию о положении тела, о направлении и скорости движения. Располагаются в связках, мышцах, суставах, сухожилиях мышц Сенсорные рецепторы могут обеспечить кинестетическое восприятие положения тела и конечностей в пространстве

Движение человека контролируется 3 мощными сенсорными системами:


- зрительная система (глаза)
- вестибулярная система (внутреннее ухо)
- соматическая система (тело)

Рецепторы двигательного аппарата

Нервно-сухожильное веретено

(сухожильный орган Гольджи) — рецепторный орган, который располагается в местах соединения мышц с пучками сухожилий. Активность СО Гольджи зависит от степени напряжения мышцы

Гольджи – рефлекс возникает в случае мощного эксцентрического сокращения и связан с чрезмерным напряжением, которое возникает в сухожилиях.

Рецепторы двигательного аппарата

Нервно-мышечное веретено— это сложный рецептор, который включает видоизмененные мышечные клетки, афферентные и эфферентные нервные отростки и контролирует скорость, степень сокращения и растяжения скелетных мышц.

Рефлекторная активность организма

- □ Рефлекс растяжения (стреч рефлекс) возникает в ответ на растяжение мышцы, мышцы сокращается
- □ Сухожильный рефлекс (рефлекс аппарата Гольджи)
 - возникает в ответ на напряжение мышцы, мышца расслабляется.

Растягивать мышцу до активизации рефлекса растяжения