Южный федеральный университет

Кафедра электрохимии

Гутерман В.Е.

Методы исследования наноструктурных композиционных электродов (на примере электрокатализаторов для ТЭ)

•Общее представление о методах исследования состава, структуры и активности платиноуглеродных нанокатализаторов

Модели металлических нанокатализаторов

Рис. Схематическое изображение часто используемых моделей металлических и биметаллических катализаторов

*Gunter Rupprechter and Christian Weilach, Mind the gap! Spectroscopy of catalytically active phases // Nanotoday, 2007, Vol.2, No 4, p. 20-29.

Pt/C нанокатализатор

На стадии синтеза Pt/C и приготовления каталитического слоя необходимо:

-получить наночастицы оптимального размера и

повысить устойчивость катализатора к ядам;

- затруднить агломерацию частиц Pt в ходе работы катализатора; повысить коррозионную стойкость углерода (особенно в местах прикрепления Pt)

Характеристики наноматериалов и методы их исследования

Тестируемые характеристики	Метод анализа	Явления или процессы, лежащие в основе данного метода
1. Элементный состав	Атомная спектроскопия	Регистрация переходов валентных или внутренних электронов из одного состояния в другое, анализ полученных спектров
	Масс- спектрометрический анализ	Испарение и ионизация исследуемого образца, создание ионного сгустка и его детектирование с помощью масс-спектрометра
2. Атомно- кристаллическая структура	 Рентгенофазовый и рентгеноструктурный анализ (дифракция рентгеновских лучей) Нейтронография (дифракция нейтронов) Электронография (дифракция электронов) 	Дифракция рентгеновского излучения на кри- сталлической решетке образца анализ получен- ного рентгеновского дифракционного профиля (определение фазового состава и параметров кристаллической решетки) Дифракция нейтронов на кристаллической решетке образца и анализ полученного дифракционного профиля Дифракция электронов на кристаллической решетке образца и анализ полученных электронограмм

Продолжение таблицы

Тестируемые характе- ристики	Метод анализа	Явления или процессы, лежащие в основе данного метода
3. Размер и форма пер- вичных частиц, а также структурных элементов (агрегатов и агломератов)	 Электронная микроскопия Просвечивающая электронная микроскопия Сканирующая (растровая) электронная микроскопия Сканирующая зондовая микроскопия Сканирующая туннельная микроскопия Сканирующая туннельная микроскопия Светорассеяние (метод статического рассеяния света) Фотонная корреляционная спектроскопия (метод динамического рассеяния света) Фотонная корреляционная спектроскопия (метод динамического рассеяния света) Дифракционные методы (рентгеновских лучей и нейтронов) Дифракционные методы седиментация Адсорбционный метод (БЭТ) 	Анализ образца с помощью пучка ускоренных электронов Просвечивание образца пучком электронов с определением размера и внутренней структуры частиц Сканирование поверхности образца пучком электронов с одновременной регистрацией вторичных электронов и получением объемного изображения Анализ с помощью зонда рельефа поверхности образца Анализ рельефа токопроводяших поверхностей путем фиксирования величины туннельного тока, возникающего между острием зонда и поверхностью образца Анализ рельефа и механических свойств поверхностей путем фиксирования величины ван-дер-вальсовых сил, возникающих между острием зонда и поверхностью образца Определение размера частиц по интенсивности рассеянного света Определение размера частиц по интенсивности и частотных характеристик рассеянного света Оценка размера частиц по угловой зависимости интенсивности диффузного рассеянного света Дифракция излучения на кристаллической решетке образца с получением дифрактограммы и оценка размеров кристаллов по величине уширения дифракционных максимумов Определение размера частиц по скорости их оседания Определение размера частиц по користаллов по величине уширения дифракционных максимумов Определение размера частиц о корости их оседания Определение размера частиц по корости их оседания

Таблица. Результаты определения размера частиц *Fe*, полученные различными методами

Метод анализа	Размер частиц, нм	Примечание	
Сканирующая электронная микроскопия; просвечивающая электронная микроскопия	50-80; 300-1000	Бимодальное распределение. Первичные частицы и их агломераты дендритной формы.	
Рентгенография	20		
Малоугловое рассеяние нейтронов; нейтронография	24; 64	Бимодальное распределение; распределение Гаусса	
Низкотемпературная адсорбция (БЭТ)	60	Изотерма II типа	
Статическое светорассеяние	500-8000	Бимодальное распределение	
Динамическое светорассеяние	70	Распределение Гаусса	

О возможностях некоторых методов исследования наноструктурных электрокатализаторов

1. Определение состава Pt/C и Pt-Me/C материалов

а) Термогравиметрическое определение загрузки платины (сплава): сжигание навески с последующим определением массы несгоревшего остатка (Pt). Для Pt/C загрузка платины в катализаторе (массовая доля, Pt loading):

 $\omega(Pt) = m($ остатка Pt)/m(исходного образца) х 100%, для Pt-Me/C аналогично рассчитывается $\omega(Pt-Me)^1$.

¹Предполагается, что при температуре сгорания углерода (700 - 800 °C) окисления металла не происходит.

определение в растворах (фотоколориметрия, атомный адсорбционный анализ, электрохимические методы анализа);
рентгенофлюоресцентный анализ растворов и порошковых материалов.

б) Определение состава сплава Pt-Me²

² В случае, если сплав неоднороден или часть Ме содержится в материале в виде оксида, определить состав электрокатализатора весьма сложно.

По результатам рентгеноспектрального флюоресцентного анализа состав сплава определяется по соотношению высот пиков, соответствующих *Pt* и *Me*.

Задание:

В ходе синтеза экспериментатор пытался получить Pt₅₀Ni₅₀/С электрокатализатор. По данным РФлА массовые доли металлов в сплаве 76,4% Pt и 23,6% Ni.

Соответствует ли состав образовавшегося сплава теоретически ожидаемому? Молярные массы металлов: M(Pt)=195,08 и M(Ni)= 58,69 г/моль. 2. <u>Определение фазового состава, размера частиц и парамет-</u> ров решетки платиноуглеродных наноразмерных композиций.

В основе рентгенографии – получение и анализ дифракционной картины, возникающей в результате интерференции рентгеновских лучей, рассеянных электронами атомов облучаемого объекта.

Рис. Дифрактограммы наночастиц рутила, полученных разными способами [Н.А.Шабанова, В.В. Попов, П.Д.Саркисов, Химия и технология нанодисперсных оксидов: Учебное пособие.-М.:ИКЦ «Академкнига», 2006, 309 с.]

Существенную информацию несут: положение рефлексов (максимумов) на дифракционной картине; интенсивность рефлексов; степень уширения пиков.

Рентгенографический анализ

- По положению максимума на дифрактограмме (углу Θ) можно рассчитать значения межплоскостных расстояний d_{HKL}: *d_{HKL} = λ/(2sinΘ)*, где λ - значение длины волны, а по значению *d_{HKL}* определить период решетки (формулы расчета приведены в литературе).
 - Если вещество состоит из наноразмерных кристаллов (менее 100 нм), пики на дифрактограммах уширяются. Для оценки реальной структуры и размера кристаллитов определяют величину Полной Ширины Дифракционного Пика на Половине его Высоты (Full Width at Half Maximum – FWHM) или полуширину пика - β:

$$\beta = \sqrt{FWHM_{_{\mathfrak{SK}cnep}}^2 - FWHM_{'\mathfrak{Smanoh}}^2}$$

По величине *β* в простейшем случае можно **приближенно** определить средний размер кристаллитов по уравнению Селякова-Шеррера:

 $D=K\lambda/(\beta \cos \Theta)$, где K=0,94

Взаимосвязь между структурными параметрами и распределением интенсивности $I_{(n)}$ по углам Θ .

Рентгенофазовый анализ

- каждая фаза дает присущий только ей (не зависящий от присутствия других фаз) набор дифракционных линий;
- интенсивность линий пропорциональна содержанию фазы.

Чувствительность РФА не превышает нескольких процентов (относительных)

Использование рентгенофазового (-структурного) анализа для определения среднего диаметра наночастиц платины в Pt/C

Дифрактограмма Pt/C электрокатализатора

II. Structural analysis

1. X-ray diffractometry

Table 1. Characteristics of synthesized Pt_3Co/C materials

Sample			E23	E25	E27
Water content in water-organic solvent, % vol.			83	50	17
Theor. composition			Pt ₃ Co/C	Pt ₃ Co/C	Pt ₃ Co/C
Metal loading, % wt/wt			24	28	30
	Sherrer equation	$\langle D \rangle_{_{111}}$, nm	3,0	3,9	4,7
Particles size	Single line method	$\left< \mathbf{D} \right>_{111}$, nm	3,2	4,1	4,8
		$\Delta d/d$, 10 ⁻²	2,0	1,5	1,1
	$FW\frac{1}{5}/\frac{4}{5}M$ method	$\left< \mathbf{D} \right>_{\!\! 111}$, nm	3,2	4,3	4,9
		σ, nm	1,5	2,1	2,5
a, Å			3,8814	3,9047	3,9084
d _{Pt-Pt} , Å			2,7442	2,7606	2,7632

Features of structure and dispersion of nuclei size distribution

Effect of «acid treatment» to the Pt3Co nanoparticles size distribution. Gistograms of size distribution for Pt₃Co/TIMREX different samples.

16

ПРОСВЕЧИВАЮЩАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ

плюсы

Прямой метод непосредственного наблюдения. Позволяет видеть агломераты, оценивать поверхностное распределение наночастиц, определять форму нанокристаллов, рассчитывать ср. размер частиц и его дисперсию.

МИНУСЫ

- 1. Дорогостоящий метод.
- 2. Выбор изучаемых объектов произволен.
- 3. Трудно разделять частицы Ме, находящиеся на противоположных сторонах частицы С-носителя.

Размер наночастиц и кристаллитов – не одно и то же.

Рис. Микрофотографии трех образцов Pt/C

37% Pt

Проблема выбора участка поверхности

Рис. Микрофотографии Pt/C катализатора, синтезированного полиольным методом

Поверхность носителя неравномерно заполнена наночастицами металла. Как найти (выбрать) «правильный участок»? Репрезентативна ли выборка?

TEM and SEM images of some Pt-Me/C catalysts synthesized in Southern Federal University in 2007

Исследование атомной структуры сплавов, составляющих наночастицы

Представление об информативности метода EXAFS

(Исследование дальной тонкой структуры рентгеновских спектров поглощения; Extended X-ray Absorption Fine Structure)

ПОЛОЧИТИ Сокатами за ото в координационной сфере) и фактором Дебая-Валлера (среднеквадра-Wu-Hsun Cheng, Kao-Ching Wu, Man-Yin Lo, Chiou-Hwang Lee, Recent advances in nano precious тичное отклонение межатомных расстояний от их равновесных значений в metal catalyst research at Union Chemical Laboratories, ITRI, Catalysis Today 97 (2004) 145–151 результате статистического и или динамического разупорядочения атомов). 2. Determination of nanoparticle thin structure; methods for the identification of core-shell structure; study of Pt/C boundary structure (EXAFS and X-ray emission spectroscopy).

XANES (исследование околопороговой структуры спектров поглощения; X-ray Absorption Near Edge Structure)

Сравнивая изменение интенсивности сигнала для Pt/C и Pt_xCo/C при переходе от потенциала 0,3 В к потенциалу 0,9 В, связанное с усилением взаимодействия Pt с кислородом (при 0,8 В формируются монослои кислорода), авторы делают вывод: для PtCo₃/C электрокатализатора окисление поверхности менее характерно,

чем для Pt₃Co/C. Вывод не бесспорен.

Activity in ORR

Fig. LSV some Pt/C, PtCu/C and Cu@Pt/C electrocatalysts. 20 mV/s. 1600 rpm. O_2 . 0.1 M HClO₄. (After 100 CV cycles).

REDERAL

20

При подготовке презентации использованы:

- 1. В.С. Баготский, Ĥ.В. Осетрова, А.М. Скундин, Топливные элементы: современное состояние и основные научные и инженерные проблемы, Электрохимия, 2003, т. 39, в.9, с. 1027 1045.
- 2. J. B. Stahl, M. K. Debe, and P. L. Coleman, J. Vac. Sci. Technol. A 14(3), 1761-1765.
- 3. J.B. Kim et al, Electrochemistry Communications, 2003, vol. 5, p. 544 548.
- Thompsett D. // Catalysts for the Proton Exchange Membrane Fuel Cell, in: Handbook of Fuel Cells. Fundamentals, Technology and Applications. Editors: Vielstich W., Lamm A., Gasteiger H.A.. Sohn, Wiley & Sons Ltd., New York, USA, 2003. Vol. 3. P. 6-1 – 6-23 (Chapter 6).
- 5. Gasteiger H.A., Kocha S.S., Sompalli B., Wagner F.T. // Applied Catalysis B: Environmental. 2005. V.56. P. 9.
- 6. Juergen Garche, DMFC Materials-FC Development Programs, PEFC Lifetime, DMFC Materials// Public lection, 30 September 2005, SAMSUNG.
- 7. Dzmitry Malevich, ELECTROCHEMICAL SYSTEMS FOR ELECTRIC POWER GENERATION, University of Guelph, www.
- 8. Н.А.Шабанова, В.В.Попов, П.Д.Саркисов, Химия и технология нанодисперсных оксидов: Учебное пособие.-М.:ИКЦ «Академкнига», 2006, 309 с.
- 9. Результаты экспериментальных исследований кафедры электрохимии ЮФУ, а также некоторые статьи из журналов Journal of Power Sources, Electrochimica Acta, Journal of Electrochemical Society и др.