Методы разработки алгоритмов

- Метод грубой силы («в лоб»)
- Метод декомпозиции
- Метод уменьшения размера задачи
- Метод преобразования
- Динамическое программирование
- Жадные методы
- Методы сокращения перебора

. . . .

Метод грубой силы

Метод грубой силы («в лоб»)

 Прямой подход к решению задачи, обычно основанный непосредственно на формулировке задачи и определениях используемых ею концепций

Пример: вычисление степени числа умножением 1 на это число n раз

- Применим практически для любых типов задач
- Часто оказывается наиболее простым в применении
- Редко дает красивые и эффективные алгоритмы
- Стоимость разработки более эффективного алгоритма может оказаться неприемлемой, если требуется решить только несколько экземпляров задачи
- Может оказаться полезным для решения небольших по размеру экземпляров задачи.
- Может служить мерилом для определения эффективности других алгоритмов

• Пример: сортировки выбором и пузырьком

Исчерпывающий перебор

Исчерпывающий перебор - подход к комбинаторным задачам с позиции грубой силы. Он предполагает:

- генерацию всех возможных элементов из области определения задачи
- выбор тех из них, которые удовлетворяют ограничениям, накладываемым условием задачи
- поиск нужного элемента (например, оптимизирующего значение целевой функции задачи).

Примеры:

- Рассмотреть все подмножества данного множества из n предметов, вычислить общий вес каждого из них для выяснения допустимости, выбрать из допустимых подмножества с максимальным весом.
- Получить все возможные маршруты, генерируя все перестановки п 1 промежуточных городов, вычисляя длину соответствующих путей и находя кратчайший из них.

Это - мр-сложные задачи (не известен алгоритм, решающии их за полиномиальное время).

Метод декомпозиции

Метод декомпозиции

Он же - метод «разделяй и властвуй»:

- Экземпляр задачи разбивается на несколько меньших экземпляров той же задачи, в идеале одинакового размера.
- Решаются меньшие экземпляры задачи (обычно рекурсивно, хотя иногда для небольших экземпляров применяется какой-нибудь другой алгоритм).
- При необходимости решение исходной задачи находится путем комбинации решений меньших экземпляров.

Метод декомпозиции идеально подходит для параллельных вычислений.

Рекуррентное уравнение декомпозиции

- В общем случае экземпляр задачи размера **n** может быть разделен на несколько экземпляров размером **n/b**, **a** из которых требуется решить.
- Обобщенное рекуррентное уравнение декомпозиции:

$$T(n) = aT(n/b) + f(n)$$
 (1)

- для упрощения принято, что размер **n** равен степени **b**.
- Порядок роста зависит от **a**, **b** и **f**.

Основная теорема декомпозиции

ОСНОВНАЯ ТЕОРЕМА. Если в рекуррентном уравнении (1) $f(n) \in \Theta(n^d)$, где $d \ge 0$, то

$$T\left(n
ight) \in egin{cases} \Theta\left(n^d
ight) & ext{если } a < b^d \ \Theta\left(n^d\log n
ight) & ext{если } a = b^d \ \Theta\left(n^{\log_b a}
ight) & ext{если } a > b^d \end{cases}$$

(Аналогичные результаты выполняются и для обозначений O и Ω .)

- Можно указать класс эффективности алгоритма, не решая само рекуррентное уравнение.
- Этот подход позволяет установить порядок роста решения, не определяя неизвестные множители.

Сортировка слиянием

Сортирует заданный массив путем его разделения на две половины, рекурсивной сортировки каждой половины и слияния двух отсортированных половин в один отсортированный массив:

```
Mergesort (A)

if n>1

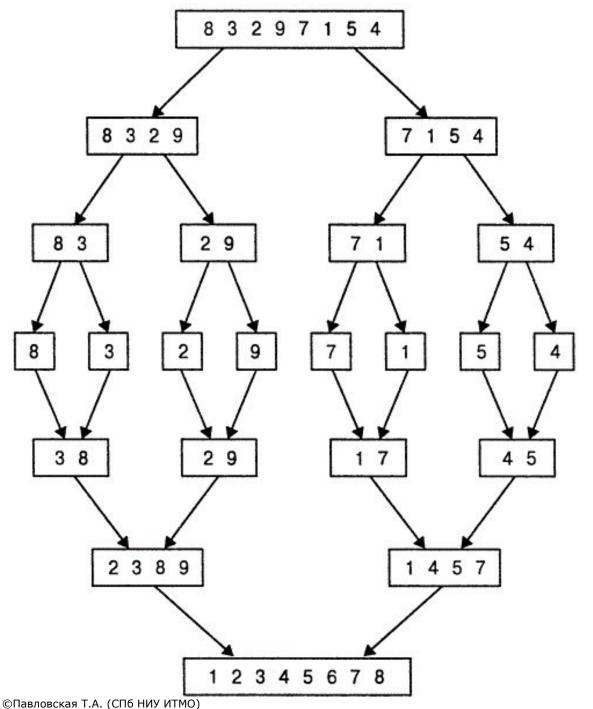
Первая половина A -> в массив В

Вторая половина A -> в массив С

Mergesort(В)

Mergesort(С)

Merge(B,C,A) // слить
```



Mergesort (A) if n>1

Первая половина А

-> в массив В

Вторая половина А

-> в массив С

Mergesort(B)

Mergesort(C)

Merge(B,C,A)

Слияние массивов

- Два индекса массивов после инициализации указывают на первые элементы сливаемых массивов.
- Элементы сравниваются, и меньший из них добавляется в новый массив.
- Индекс меньшего элемента увеличивается (он указывает на элемент, непосредственно следующий за только что скопированным).
- Эта операция повторяется до тех пор, пока не будет исчерпан один из сливаемых массивов.
- Оставшиеся элементы второго массива добавляются в конец нового массива.

Анализ сортировки слиянием

- Пусть длина файла является степенью 2.
- Количество сравнений ключей:

$$C(n) = 2*C(n/2) + C_{merge}(n)$$
 $n > 1, C(1)=0$

- C_{merge} (n) = n-1 в худшем случае (кол-во сравнений ключей при слиянии)
- В худшем случае С_w:

$$C_w(n) = 2*C_w(n/2) + n-1$$

 $C_w(n) \in \Theta(n \log n) - по осн. теореме$

d=1 a=2 b=2

ОСНОВНАЯ ТЕОРЕМА. Если в рекуррентном уравнении (1) $f(n) \in \Theta(n^d)$, где $d \ge 0$, то

$$T\left(n
ight) \in egin{cases} \Theta\left(n^d
ight) & ext{если } a < b^d \ \Theta\left(n^d\log n
ight) & ext{если } a = b^d \ \Theta\left(n^{\log_b a}
ight) & ext{если } a > b^d \end{cases}$$

(Аналогичные результаты выполняются и для обозначений O и Ω .)

- Количество сравнений ключей, выполняемых сортировкой слиянием, в худшем случае весьма близко к теоретическому минимуму количества сравнений для любого алгоритма сортировки, основанного на сравнениях.
- Основной недостаток сортировки слиянием необходимость дополнительной памяти, количество которой линейно пропорционально размеру входных данных.

Быстрая сортировка

В отличие от сортировки слиянием, которая разделяет элементы массива в соответствии с их положением в массиве, быстрая сортировка разделяет элементы массива в соответствии с их значениями.

Описание алгоритма

- Выбираем опорный элемент
- Выполняем перестановку элементов для получения разбиения, когда все элементы до некоторой позиции s не превышают элемента A [s], а элементы после позиции s не меньше него.
- Очевидно, что после разбиения A [s] находится в окончательной позиции, и мы можем сортировать два подмассива элементов до и после A [s] независимо (тем же или другим методом)

Процедура перестановки элементов

- Эффективный метод, основанный на двух проходах подмассива — слева направо и справа налево. При каждом проходе элементы сравниваются с опорным.
- Проход слева направо (i) пропускает элементы, меньшие опорного, и останавливается на первом элементе, не меньшем опорного.
- Проход справа налево (j) пропускает элементы, большие опорного, и останавливается на первом элементе, не превышающем опорный.
- Если индексы сканирования не пересеклись, обмениваем найденные элементы местами и продолжаем проходы.
- Если индексы пересеклись, обмениваем опорный элемент с Ај

Эффективность быстрой сортировки

 Наилучший случай: все разбиения оказываются посередине соответствующих подмассивов

$$C_{best}(n) = 2C_{best}(n/2) + n$$
 при $n > 1, C_{best}(1) = 0.$

Согласно основной теореме, $C_{best}(n) \in \Theta(n \log_2 n)$. Точное решение для $n=2^k$ дает $C_{best}(n) = n \log_2 n$.

- В наихудшем случае все разбиения оказываются такими, что один из подмассивов пуст, а размер второго на 1 меньше размера разбиваемого массива (зависимость квадратичная).
- В среднем случае считаем, что разбиение может выполняться в каждой позиции с одинаковой вероятностью:

$$C_{avq} \approx 2 n \ln n \approx 1,38 n \log_2 n$$

Улучшения алгоритма

- улучшенные методы выбора опорного элемента
- переключение на более простую сортировку для малых подмассивов
- удаление рекурсии

Все вместе эти улучшения могут снизить время работы алгоритма на 20-25% (Р. Седжвик)

Обход бинарного дерева

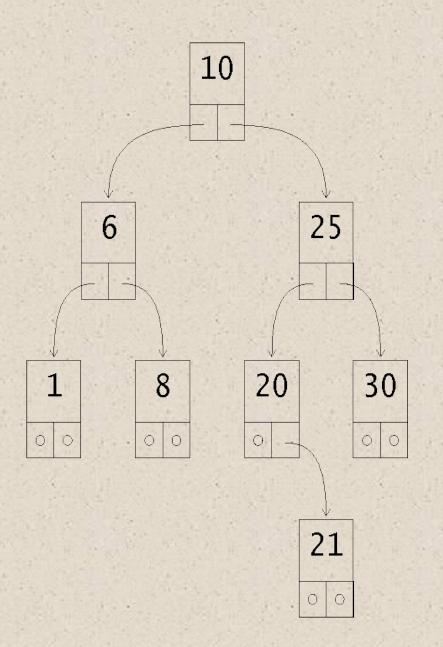
- Это еще один пример применения метода декомпозиции
- При обходе в прямом порядке сначала посещается корень дерева, а затем левое и правое поддеревья.
- При симметричном обходе корень посещается после левого поддерева, но перед посещением правого.
- При обходе в обратном порядке корень посещается после левого и правого поддеревьев.

Обход дерева

```
procedure print_tree( дерево );
begin
    print_tree( левое_поддерево )
    посещение корня
    print_tree( правое_поддерево )
end;
```

8 10 20 21 25

30



Метод уменьшения размера задачи

Метод уменьшения размера задачи

Основан на использовании связи между решением данного экземпляра задачи и решением меньшего экземпляра той же задачи.

Если такая связь установлена, ее можно использовать либо сверху вниз (рекурсивно), либо снизу вверх (без рекурсии). (пример – возведение числа в степень)

Имеется три основных варианта метода уменьшения размера:

- уменьшение на постоянную величину (обычно на 1);
- уменьшение на постоянный множитель (обычно в 2 раза);
- уменьшение переменного размера.

Сортировка вставкой

Предположим, что задача сортировки массива размерностью n-1 решена. Тогда остается вставить An в нужное место:

- Просматривая массив слева направо
- Просматривая массив справа налево
- Используя бинарный поиск места вставки

 Хотя сортировка вставкой основана на рекурсивном подходе, более эффективной будет ее реализация снизу вверх (итеративная).

Реализация на псевдокоде

```
for i = 1 to n — 1 do

v < — A[i]

j < — i-1

while j >= 0 and A[j] > v do

A[j + 1] < — A[j]

j < — j-1

A[j + 1] < — v
```

Эффективность сортировки вставкой

- Наихудший случай: выполняется столько же сравнений, сколько и в сортировке выбором
- Наилучший случай (для изначально отсортированного массива): сравнение выполняется только 1 раз для каждого прохода внешнего цикла
- Средний случай (случайный массив): выполняется в ~2 раза меньше сравнений, чем в случае убывающего массива.
 Т.о., средний случай в 2 раза лучше наихудшего. Вкупе с превосходной производительностью для почти отсортированных массивов это выделяет сортировку вставкой из других элементарных (выбором и пузырьком) алгоритмов
- Модификация метода вставка одновременно нескольких элементов, которые перед вставкой сортируются.
- Расширение сортировки вставкой сортировка Шелла, дает еще лучший алгоритм для сортировки достаточно больших файлов.



Генерация комбинаторных объектов

- Наиболее важными типами комбинаторных объектов являются перестановки, сочетания и подмножества данного множества.
- Обычно они возникают в задачах, требующих рассмотрения различных вариантов выбора.
- Кроме того, существуют понятия размещения и разбиения.

Генерация перестановок

Число перестановок

- Пусть дан n-элементный набор (множество).
- На первом месте в перестановке может стоять любой элемент, то есть существует п способов выбора первого элемента.
- Осталось (n-1) элементов для выбора второго элемента в перестановке (существует (n-1) способов выбора второго элемента).
- Осталось (n-2) элемента для выбора третьего элемента в перестановке, и т.д.
- Итого, n-элементный упорядоченный набор можно получить:

$$n(n-1)(n-2)(n-3) \times \ldots \times (n-k) \times \ldots \times 2 \times 1 = n!$$

Применение метода уменьшения размера к задаче получения всех перестановок

- Для простоты положим, что множество переставляемых элементов — это множество целых чисел от 1 до п.
- Задача меньшего на единицу размера состоит в генерации всех (n 1)! перестановок.
- Полагая, что она решена, мы можем получить решение большей задачи путем вставки n в каждую из n возможных позиций среди элементов каждой из перестановок n — 1 элементов.
- Все получаемые таким образом перестановки будут различны, а их общее количество:

$$n(n-1)! = n!$$

 Можно вставлять п в ранее сгенерированные перестановки слева направо или справа налево. Выгодно начинать справа налево и изменять направление всякий раз при переходе к новой перестановке множества {1,...,n —1}.

Пример (восходящая генерация перестановок)

132 312

21

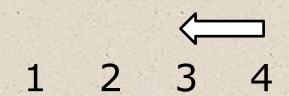
Алгоритм Джонсона-Троттера

Вводится понятие мобильного элемента. С каждым элементом связывается стрелка, элемент считается **мобильным**, если стрелка указывает на меньший соседний элемент.

- Инициализируем первую перестановку значением 1 2 ... п (все стрелки влево)
- while имеется мобильное число \mathbf{k} do
 - Находим наибольшее мобильное число к
 - Меняем местами к и соседнее число, на которое указывает стрелка к
 - Меняем направление стрелок у всех чисел, больших к

Лексикографический порядок

- Пусть есть первая перестановка (например, 1234).
- Для нахождения каждой следующей:
 - 1. Сканируем текущую перестановку справа налево в поисках первой пары соседних элементов таких, что $\mathbf{a[i]} < \mathbf{a[i+1]}$. Для перестановки 1234 это число $\mathbf{3}$ (3 < 4).
 - 2. Находим наименьший элемент из "хвоста", больший a[i], и помещаем его в позицию i. В первый раз на место 3 ставим 4.
 - 3. Позиции с i+1 по n заполняем элементами a[i], a[i+1],..., a [n], из которых изъят помещенный в позицию i элемент, в возрастающем порядке. В данном случае 3.



Пример для осознания алгоритма

1234	1243	1324	1342	1423	1432
2134	2143	2314	2341	2413	2431
3124	3142	3214	3241	3412	3421
4123	4132	4213	4231	4312	4321

Число всех перестановок из n элементов

$$P(n) = n!$$

Подмножества множества

 Множество А является подмножеством множества В, если любой элемент, принадлежащий А, также принадлежит В:

$A \subset B$ или $A \subseteq B$

- Любое множество является своим подмножеством.
 Пустое множество является подмножеством любого множества.
- Множество всех подмножеств множества обозначается 2^A (еще его называют power set, множество-степень, степень множества, булеан, показательное множество).
- Число подмножеств конечного множества, состоящего из n элементов, равно 2^n (доказательство см. в Википедии \mathfrak{S})

Генерация всех подмножеств множества

- Применим метод уменьшения размера задачи на 1.
- Все подмножества множества $A = \{a_1, ..., a_n\}$ можно разделить на две группы которые содержат элемент a_n и которые его не содержат.
- Первая группа это все подмножества множества {a₁,...,a_{n-1}}; все элементы второй группы можно получить путем добавления элемента a_n к подмножествам первой группы.

```
\varnothing \ \{a_1^{}\}
\varnothing \ \{a_1^{}\} \ \{a_2^{}\} \ \{a_1^{}, a_2^{}\}
\varnothing \ \{a_1^{}\} \ \{a_2^{}\} \ \{a_1^{}, a_2^{}\} \ \{a_1^{}, a_3^{}\} \ \{a_2^{}, a_3^{}\} \ \{a_1^{}, a_2^{}, a_3^{}\}
```

Удобно поставить в соответствие элементам множества битовые строки:

000 001 010 011 100 101 110 111

- Иные порядки: плотный; код Грея:
- 000 001 011 010 110 111 101 100

37

Ø

Генерация кодов Грея

- Код Грея для п бит может быть рекурсивно построен на основе кода для n-1 бит путём:
 - записывания кодов в обратном порядке
 - конкатенации исходного и перевёрнутого списков
 - дописывания 0 в начало каждого кода в исходном списке и 1 в начало кодов в перевёрнутом списке.

Пример:

- Коды для n = 2 бит: 00, 01, 11, 10
- Перевёрнутый список кодов: 10, 11, 01, 00
- Объединённый список:
 00, 01, 11, 10, 10, 11, 01, 00
- К начальному списку дописаны нули:
 000, 001, 011, 010, 10, 11, 01, 00
- К перевёрнутому списку дописаны единицы:
 000, 001, 011, 010, 110, 111, 101, 100

К-элементные подмножества

■ Количество k-элементных подмножеств множества n (0 $\leq k \leq n$) называется числом сочетаний (биномиальным коэффициентом):

$$C_k^n = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)...(n-k+1)}{k!}$$
 Прямое решение неэффективно из-за быстрого роста факториала.

- Как правило, генерацию k-элементных подмножеств проводят в лексикографическом порядке (для любых двух подмножеств первым генерируется то, из индексов элементов которого можно составить меньшее k-значное число в n-ричной системе счисления).
- Метод:
 - первым элементом подмножества мощности к может быть любой из элементов, начиная с первого и заканчивая (n-k+1)-ым.
 - После того, как индекс первого элемента подмножества зафиксирован, остается выбрать k-1 элемент из элементов с индексами, большими чем у первого.
 - Далее аналогично, сводя задачу к меньшей размерности до тех пор, пока на низшем уровне рекурсии не будет выбран последний элемент, после чего выбранное подмножество можно распечатать или обработать.

Пример: сочетания из 6 по 3 #include <cstdio> const int N = 6, K = 3;

125 const int N = 6, K = 3; 134 int a [K]; 135 void rec(int i) 145 $\{ if (i == K) \}$ 234 { for (int j = 0; j < K; j++) printf("%d ", a[j]); printf("\n"); } 235 else 245 { for $(a[i] = (i > 0 ? a[i-1] + 1 : 1); a[i] < N; a[i] ++) rec(i + 1); }$

int main() { int a[N]; rec(0); }

123

124

Свойства сочетаний

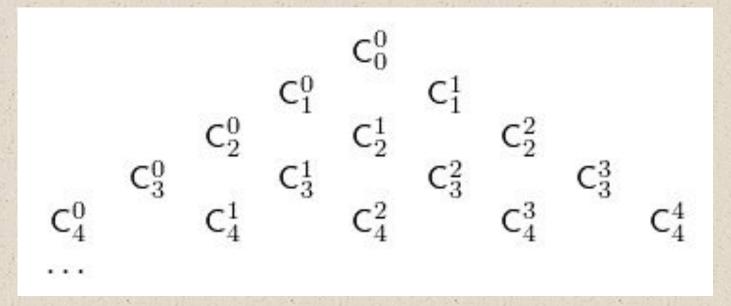
каждому n-элементному подмножеству данного элементного множества соответствует одно и только одно n-k-элементное подмножество того же множества:

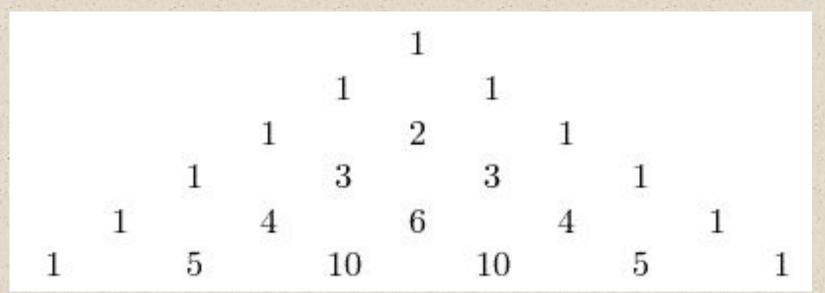
$$C_n^k = C_n^{n-k}$$

C

$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

Треугольник Паскаля





Свойства треугольника Паскаля (Википедия)

- Числа треугольника симметричны(равны) относительно вертикальной оси.
- В строке с номером n:
 - первое и последнее числа равны 1.
 - второе и предпоследнее числа равны n.
 - ullet третье число равно треугольному числу $T_{n-1}=rac{n(n-1)}{2}$, что также равно сумме номеров предшествующих строк $^{[4]}$.
 - четвёртое число является тетраэдрическим^[4].
 - m-е число равно биномиальному коэффициенту $\binom{n}{m-1}$.
- Сумма чисел восходящей диагонали, начинающейся с первого элемента (n-1)-й строки, есть n-е число Фибоначчи: [4]

$$\binom{n-1}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \ldots = F_n.$$

- Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана.
- Сумма чисел n-й строки треугольника Паскаля равна $2^{n[4]}$.
- Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры.
- Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные в белый, то образуется треугольник Серпинского.
- Все числа в n-й строке, кроме единиц, делятся на число n, если и только если n является простым числом^[5] (следствие теоремы Люка).
- Если в строке с нечётным номером сложить все числа с порядковыми номерами вида 3n, 3n+1, 3n+2, то первые две суммы будут равны, а
- Каждое число в треугольнике равно количеству способов добраться до него из вершины, перемещаясь либо вправо-вниз, либо влево-вниз

Размещения

Размещением из **n** элементов по **m** называется последовательность, состоящая из **m** различных элементов некоторого п-элементного множества (комбинации, которые составлены из данных **п** элементов по **m** элементов и отличаются либо самими элементами, либо порядком элементов)

Различие в определениях сочетаний и размещений:

- Сочетание подмножество, содержащее т элементов из п (порядок элементов не важен).
- Размещение это последовательность, содержащая т элементов из п (порядок элементов важен).

При формировании последовательности важен порядок следования элементов, а при формировании подмножества порядок не важен.

Число размещений

• Число размещений из n по m:

$$A_n^m = \frac{n!}{(n-m)!} = n(n-1)...(n-m+1)$$

Пример 1: Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различны и нечетны?

Основное множество: $\{1, 3, 5, 7, 9\}$ – нечетные цифры, n=5

■ Соединение – двузначное число m=2, порядок важен, значит, это размещение «из пяти по два».

$$A_5^2 = \frac{5!}{3!} = 4 \cdot 5 = 20$$

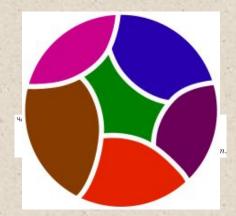
- Перестановки можно считать частным случаем размещений при m=n
- Пример 2: Сколькими способами можно составить флаг, состоящий из трех горизонтальных полос различных цветов, если имеется материал пяти цветов?

Размещения с повторениями

- Размещения с повторениями из n элементов множества $E = \{a_1, a_2, ..., a_n\}$ по k всякая конечная последовательность, состоящая из k элементов данного множества E.
- Два размещения с повторениями считаются различными, если хотя бы на одном месте они имеют различные элементы множества Е.
- Число различных размещений с повторениями из n по k равно n^k.

Разбиение множеств

 Разбиение множества — это представление его в виде объединения произвольного количества попарно непересекающихся подмножеств.



Количество неупорядоченных разбиений n-элементного множества на k частей - число Стирлинга 2-го рода:

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k+j} {k \choose j} j^n$$

 Количество упорядоченных разбиений *п*-элементного множества на *m* частей фиксированного размера – мультиномиальный коэффициент:

$$\binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! k_2! \ldots k_m!}$$

$$k_1 + k_2 + \ldots + k_m = n$$

 Количество всех неупорядоченных разбиений п-элементного множества задается числом Белла:

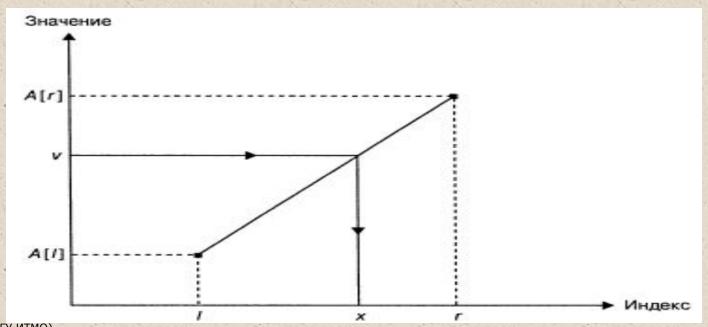
$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

Метод уменьшения на постоянный множитель

- Пример: бинарный поиск
- Подобные алгоритмы логарифмические и, будучи очень быстрыми, встречаются достаточно редко.

Метод уменьшения на переменный множитель

 Примеры: поиск и вставка в бинарное дерево поиска, интерполяционный поиск:

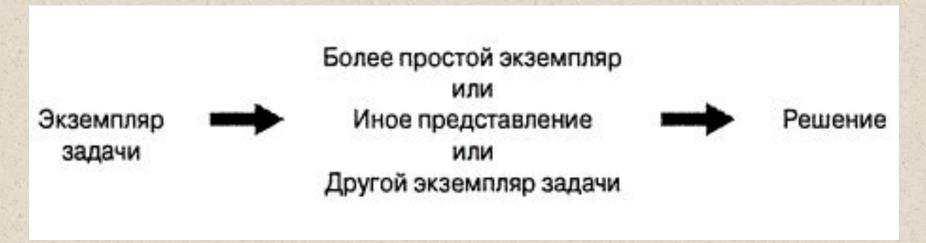


Анализ эффективности

- Интерполяционный поиск в среднем требует менее log₂ log₂
 n+1 сравнений ключей при поиске в списке из п случайных значений.
- Эта функция растет настолько медленно, что для всех реальных практических значений п ее можно считать константой.
- Однако в наихудшем случае интерполяционный поиск вырождается в линейный, который рассматривается как наихудший из возможных.
- Интерполяционный поиск лучше использовать для файлов большого размера и для приложений, в которых сравнение или обращение к данным — дорогостоящая операция.

Метод преобразования

- Состоит в том, что экземпляр задачи преобразуется в другой, по той или иной причине легче поддающийся решению.
- Имеется три основных варианта этого метода:



Пример 1: проверка единственности элементов массива

- Алгоритм на основе грубой силы попарно сравнивает все элементы, пока не будут найдены два одинаковых либо пока не будут пересмотрены все возможные пары. В наихудшем случае эффективность квадратична.
- К решению задачи можно подойти и по-другому сначала отсортировать массив, а затем сравнивать только последовательные элементы.
- Время работы алгоритма сумма времени сортировки и времени на проверку соседних элементов.
- Если воспользоваться хорошим алгоритмом сортировки, весь алгоритм проверки единственности элементов массива также будет иметь эффективность О (n log n)

Пример 2: поиск

- Метод грубой силы: последовательный поиск
- Метод преобразования задачи: сортировка + бинарный поиск
- Требуется оценить наименьшее количество поисков, при котором окупается предварительная сортировка

Пример 3: пирамидальная сортировка