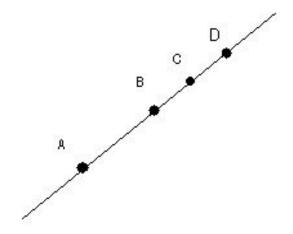


Фестиваль исследовательских и творческих работ учащихся «Портфолио»


Муниципальное образовательное учреждение средняя общеобразовательная школа № 6 городского округа Кохма Ивановской области

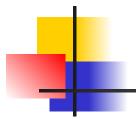
Секция: математика

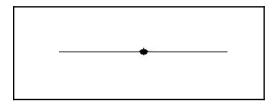
<u>Исследовательская работа</u> по теме «Отрезки»

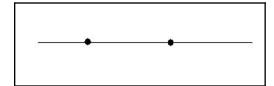

Выполнили учащиеся 9 класса: Куклев Александр, Егорова Ксения

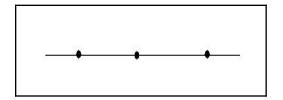
<u>Руководитель:</u> Малышева И.М.

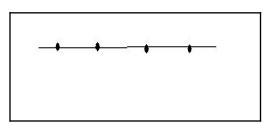
1.Задача.

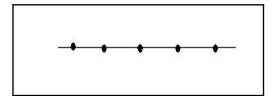

На прямой отметили точки А, В, С и D. Сколько отрезков изображено на этой прямой?




2.Проблема.


Как зависит количество отрезков на прямой от числа точек, отмеченных на ней?




3. Пробы

4. Таблица результатов

Пробы	I	II	III	IV	V
Число точек (n)	1	2	3	4	5
Число отрез- ков (х _n)	0	1	3	6	10

Каждое следующее число отрезков х равняется предыдущему числу отрезков X_{n-1} , сложенному с числом точек, соответствующих ему:

$$1 = 0 + 1$$
;

$$3 = 1 + 2$$
;

$$1 = 0 + 1;$$
 $3 = 1 + 2;$ $6 = 3 + 3;$ $10 = 6 + 4.$

$$10 = 6 + 4$$
.

$$x_n = x_{n-1} + (n-1).$$

Пробы III IV V Число точек (n) 1 2 3 4 5 Число отрезков (x_n) 0 1 3 6 10

5.Гипотезы.

II. Каждое следующее число х_п равняется половине произведения соответствующего ему числа п и предыдущего числа n-1 точек:

$$1 = \frac{2 \cdot 1}{2};$$
 $3 = \frac{3 \cdot 2}{2};$ $6 = \frac{4 \cdot 3}{2};$ $10 = \frac{5 \cdot 4}{2}.$

$$x_n = \frac{(n-1) \cdot n}{2}.$$

Пробы	I	II	III	IV	V
Число точек (n)	1	2	3	4	5
Число отрезков (x _n)	0	1	3	6	10

5.Гипотезы.

III. Каждое следующее число xn равняется сумме всех натуральных чисел, предшествующих числу n:

$$1 = 1$$
; $3 = 1 + 2$; $6 = 1 + 2 + 3$; $10 = 1 + 2 + 3 + 4$.

Значит,
$$x_n = 1 + 2 + 3 + ... + (n-1)$$
.

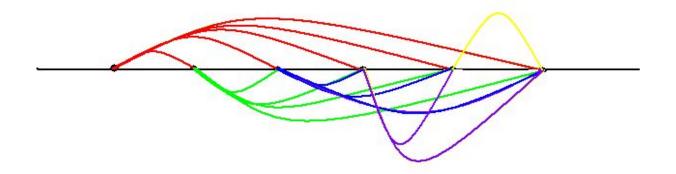
5.Гипотезы.

IV. Каждое следующее число х₁, начиная с четвертого, получается путем последовательного удвоения нечетных чисел натурального ряда 3, 5, ...:

$$6 = 2 \cdot 3;$$
 $10 = 2 \cdot 5.$

Значит,

$$x_{n+3} = 2(2n+1).$$


```
Пробы
I
II
III
IV
V

Число точек (n)
1
2
3
4
5

Число отрезков (xn)
0
1
3
6
10
```

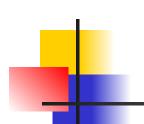
6. Проверка гипотез.

Пусть n=6 (рис. 3). Тогда: a) фактическое число отрезков $x_6=15$;

6. Проверка гипотез.

I.
$$x_6 = x_5 + (6-1) = 10 + 5 = 15;$$

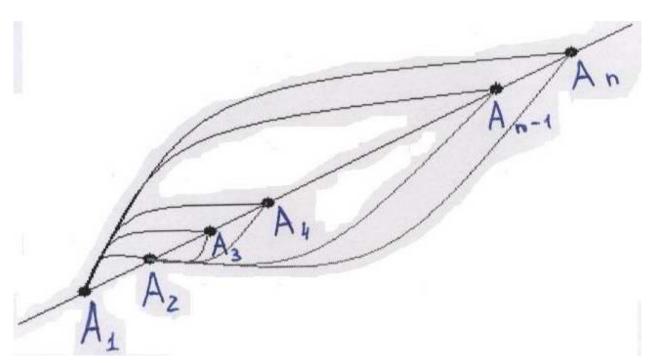
II.
$$x_6 = \frac{5 \cdot 6}{2} = 15;$$


III.
$$x_6 = 1 + 2 + 3 + 4 + 5 = 15;$$

IV.
$$x_6 = 2 \cdot (2 \cdot 3 + 1) = 2 \cdot 7 = 14$$
.

7. Доказательство гипотез.

$$x_{n-1} + (n-1) = 1 + 2 + 3 + ... + (n-1).$$


7. Доказательство гипотез.

2). Гипотеза II равносильна гипотезе III:

$$1+2+3+...+(n-1)=\frac{n(n-1)}{2}.$$

7. Доказательство гипотез.

3) Докажем гипотезу III.

$$x_n = 1 + 2 + 3 + \dots + (n-1)$$