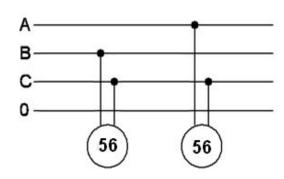
«Электроснабжение агломерационной фабрики»

Основные задачи

Расчет силовых и осветительных нагрузок предприятия; Выбор места расположения ГПП и РП. Картограмма нагрузок; Выбор конфигурации распределительной сети предприятия Определение мощности компенсирующих устройств и их рациональное распределение; Выбор и проверка трансформаторов ГПП и ЦТП; Расчет питающей и распределительной сети завода; Расчет цеховой сети; Расчет токов КЗ; Выбор и проверка коммутационной аппаратуры. Карта селективности; Расчет заземляющих устройств; Молниезащита РМЦ; Графическая часть проекта.

Расчет трехфазных электрических нагрузок


- Правильное определение ожидаемых электрических нагрузок при проектировании является основой для рационального решения всего сложного комплекса вопросов электроснабжения современного промышленного предприятия.
- Расчет ведется по методу коэффициента расчетной нагрузки. /PTM 36.18.32.4-92/
- Алгоритм вычислений:
- 1. Выбираем узел питания;
- 2. Все приемники группируются по характерным категориям с одинаковыми Ки и tgф. Мощность ЭП приводим к ПВ=1;
- 3. Определение суммарной мощности электроприемников;
- 4. Определяем нагрузки за наиболее загруженную смену:
- Рсм=Ки · Рн; Qсм=Рсм · tgф;
- 5. Суммируем нагрузки за наиболее загруженную смену ΣРсм, ΣQcм;
- 6. Определяем групповой коэффициент использования;

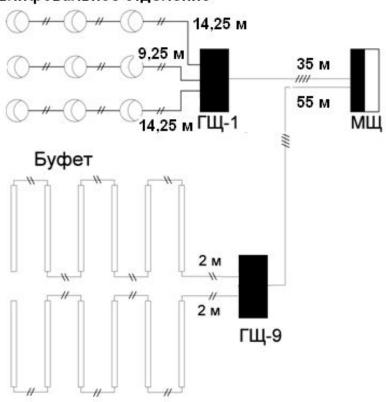
- 7. Находим эффективное число ЭП пэф;
- 8. Находим коэффициент расчетной нагрузки Кр в зависимости от Киг и пэф;
- 9. Находим расчетную активную нагрузку: Рр=Кр Рсм;
- 10. Находим расчетную реактивную нагрузку;
- 11. Определение полной расчетной мощности;
- 12. Расчетный ток.

V	Pac	чтные вели	чины	Эффекти вное число	Коэффиц иент	Расч	Расчетн ый ток, А								
По заданию	Cnpas	очные да	нные				~ <u>+</u>	расчетно	Активная кВт	Реактивн ая, кВАр					
	Кол-во	Номинальная		Коэффиц Коэффи		ициент		9	~	gn*P	(100)		_	-	5
Наименование ЭП	ЭП, ш т п	Одного	Общая	иент использ ования Ки	coso	tgφ	Ки*Рн	Ки*Рн*tgq	n*PH²	n3=(∑PH)²/∑n*PH²	й нагрузки Кр	Рр=Кр*Ки*Рн	Op=1,1*Ku*Pu*1g 4 npu nas10 Op=Ku*Pu*1g4 npu na>10	Sp=VPp²+Op²	Ip=Sp/√3*UH
1	2	3	4	5		6	7	8	9	10	11	12	13	14	15
ШРА-1															
Ножницы пистовые с наклонным ножом	1	7	7	0,14	0,5	1,73	0,98	1,70	49		0,95				
Трубоотрезной станок	1	2,8	2,8	0,2	0,65	1,17	0,56	0,65	7,84	1					
Точильный двухсторонний станок	4	1,7	6,8	0,14	0,5	1,73	0,952	1,65	11,56						
Пресс однокривошипный	2	4,5	9	0,2	0,65	1,17	1,8	2,10	40,5	8					
Настольно-сверлильный станок	6	0,6	3,6	0,14	0,5	1,73	0,504	0,87	2,16	1					
Кран-балка	2	7,8	15,6	0,1	0,5	1,73	1,56	2,70	121,68			ý.			
Вентилятор	2	7	14	0,75	0,85	0,62	10,5	6,51	98]					
Радиально-сверлильный станок	2	6,9	13,8	0,14	0,5	1,73	1,932	3,35	95,22						
Вертикаль-сверлильный станок	2	1,7	3,4	0,14	0,5	1,73	0,476	0,82	5,78				Lamazooni		
итого	22	1000	76	0,253	10000		19,264	20,359	431,74			18,301	22,394	28,921	41,744
1	2	3	4	5	7	6	7	8	9	10	11	12	13	14	15
ШРА-2															
Зигмашина	1	1,7	1,7	0,2	0,65	1,17	0,34	0,3975	2,89						
Трубогибочный станок	1	7 4,5	7 9	0,14	0,5	1,73	0,98	1,70	49			(
Фланцегибочный станок	2			0,14	0,5			2,18							
Вальцовка трехваловая	2	2,5	5	0,14	0,5	1,73	0,70	1,21	12,50			0			
Пресс-ножницы комбинированые	1	4,5	4,5	0,14	0,5	1,73	0,63	1,09	20,25	8	1				
Пресс листогибочный	1	15,7	15,7	0.14	0,5	1,73	2,20	3,81	246,49						
Настольно-сверлильный станок	6	0,6	3,6	0,12	0,5	1,73	0,43	0,75	2,16						
Горизонтально-фрезерный станок	2	6,3	12,6	0,14	0,5	1,73	1,76	3,06	79,38						
ИТОГО	16		59,1	0,141			8,304	14,1916	412,67			8,304	15,611	17,682	25,522

Расчет однофазных нагрузок

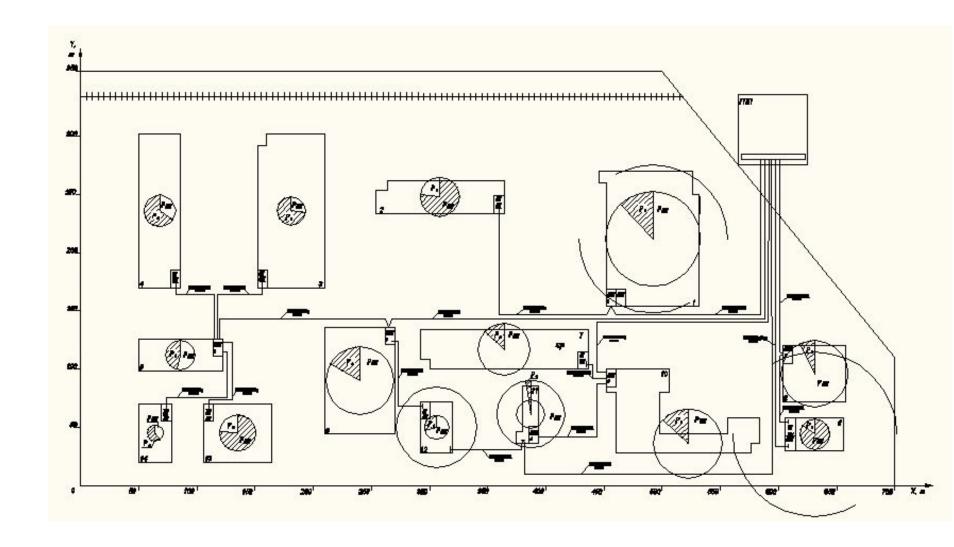
• Электрические нагрузки ЭП однофазного тока должны быть распределены равномерно по фазам. Однофазные ЭП, включенные на фазное и линейное напряжения и распределенные по фазам с неравномерностью не выше 15 % по отношению к общей мощности трехфазных и однофазных ЭП в группе, учитываются как трехфазные ЭП той же суммарной мощности. Если неравномерность превышает 15 %, то расчетная нагрузка принимается равной утроенной величине наиболее загруженной фазы.

Узлы питания групп ЭП	Уст. мощн. прив. к ПВ=100%	0.00000000	ΣΡη, (κΒτ)	Усти. мощи. ЭП, вкл на лин			Коэф привед к			Усти. мощи. ЭП,						Среднии нагрузки					
				ab	bc 6	ca 7	a 1			a 11	b 12	c 13	Ž 14	coso	e e	Активные, Ро		Рсм Реал		ктивные, Осм	
									C							a	b	c	a	b	c
1								9	10					15		16	17	18	19	20	21
СЩ-1		92 8				SX		50	8 98	20 10			8 8	0 10	1 60	9	64	5 50	. B		50.
Электричес						8			0 - 89												
кая печь	30		60	0				0000000					0,50	0,95	0,33						
		2						0,72	0,28												
камерная		2			30			0.09	0,67								21,6	8,4		2,7	20,1
со щитом						30	0,28		0,72	1											
управления						30	0,67	× =	0,09							8,4		21,6	20,1		2,7
итого:		2	60			0				4 8						4,2	10,8	15	10,05	1,35	11,4

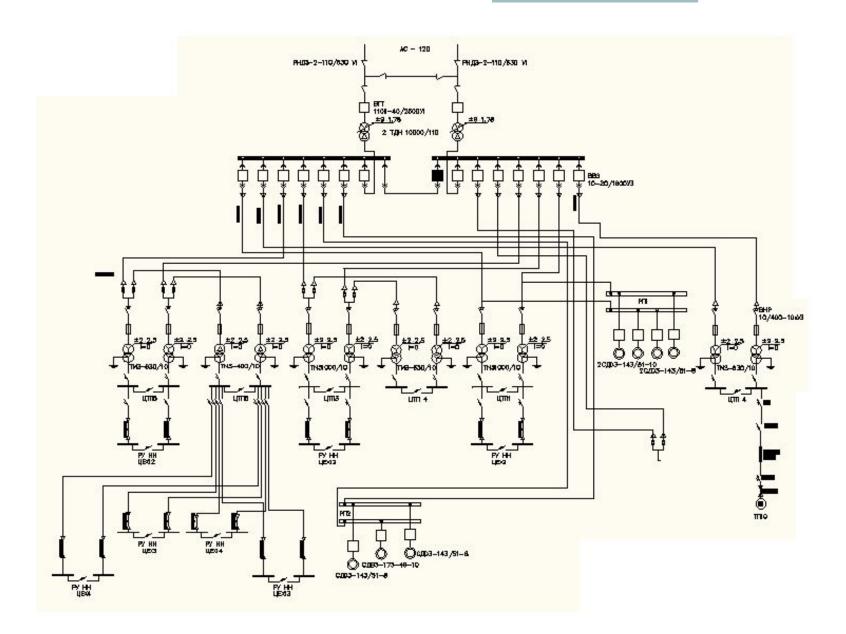

Светотехнический расчет освещения

- В светотехническом разделе решаются следующие задачи: выбираются типы источников света и светильников, намечают наиболее целесообразные высоты установки светильников и их размещения, определяют качественные характеристики осветительных установок.
- В курсовом проекте светотехнический расчет производится следующими методами:
- 1. Метод коэффициента использования светового потока;
- 2. Методом удельной мощности.

Электрический расчет освещения


- Выбор схемы питания осветительной установки.
- Для питания осветительной установки принимаем радиальную схему, т.к. она наиболее рациональна для нашего цеха. Групповые щитки предназначены для установки аппаратов защиты и управления электрическими осветительными сетями. Схема питания осветительной установки представлена на рисунке.

Шлифовальное отделение


Выбор места ГПП и РП. Картограмма нагрузок.

- Центр нагрузок является символическим центром потребления электроэнергии. Поэтому ГПП располагаем как можно ближе к центру нагрузок. Это позволяет приблизить высокое напряжение к центру нагрузок, сократить протяженность сетей, уменьшить расход проводникового материала, снизить потери
- Картограмма представляет собой размещенные на генплане предприятия или цеха окружности, площадь которых соответствует в выбранном масштабе расчетным нагрузкам.

Выбор конфигурации распределительной сети предприятия

- Правильный выбор места расположения подстанций и РП на территории предприятия позволяет составить наиболее рациональную схему электроснабжения (наименьшие длины питающих линий, соответственно меньшие потери мощности).
- Принимаем схему с четырьмя распределительными пунктами.
- Внутризаводскую сеть, исходя из посчитанной расчетной нагрузки цехов по заводу, будем проектировать на напряжение 10 кВ, так как отсутствуют потребители напряжением 6 кВ. Внутризаводскую сеть мы спроектировали так, что часть цехов будет получать питание с шин ГПП, часть с шин двух распределительных пунктов, а высоковольтная нагрузка 10 кВ с ТП 10 кВ

Заключение

- В результате проделанной работы для агломерационной фабрики выполнено комплексное проектирование, в частности: расчёт электрических нагрузок, расчет, выбор и проверка ЦТП, кабельных линий, токопровода для питания цехов, аппаратов защиты, кабелей и оборудования РМЦ. Проведён расчёт заземления и молниезащиты ремонтно-механического цеха. Для предприятия в целом данный расчет не проводится по причине невысотности объектов, находящихся на его территории.
- Все выбранные аппараты отвечают техническим требованиям в соответствии с ПУЭ и ГОСТ, а также требованиям техники безопасности.