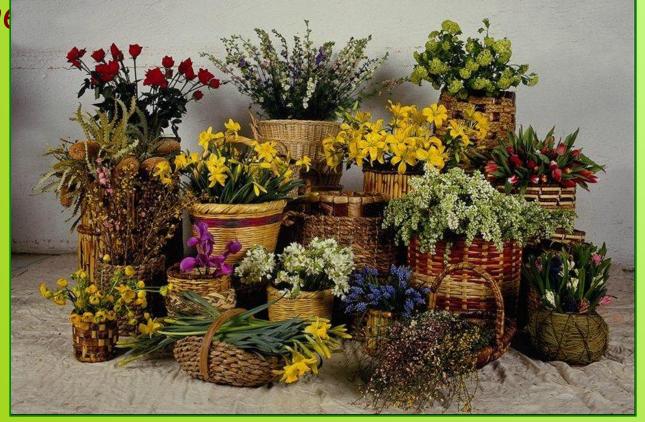


ЗАПАХ ВЕЩЕСТВ


Автор:

Кирьянова Валентина ученица 11 класса ГОУ СОШ №551 г. Москва

2010год

Эфирные масла— это живая душа

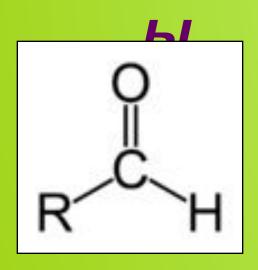
pacme

Они летучи, биологически активны, неповторимы по своим свойствам и аромату.

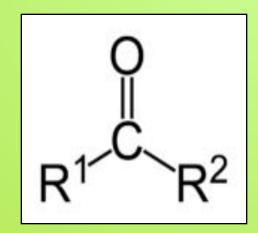
Ароматы- бесценный дар природы!

Цель проекта:

- •Изучить химический состав, физические и химические свойства эфирных масел и способы их получения.
- •Получить эфирные масла апельсина, ели и мяты и провести их качественный анализ.

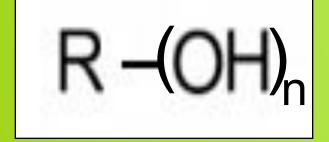


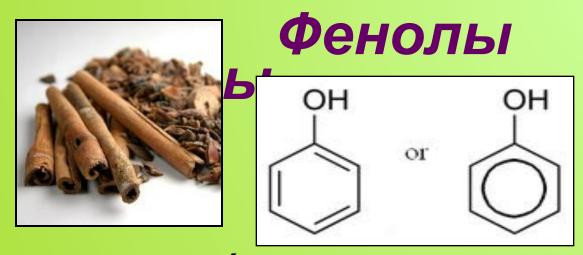
Химический состав эфирных масел


Эфирные масла - это душистые смеси органических соединений, вырабатываемые эфиромасличными растениями. В состав эфирных масел входит от 120 до 500 различных органических и неорганических веществ.

Альдегид

Кетоны




Альдегиды - органические соединения, в молекулах которых карбонильная группа связана с атомом водорода и углеводородным радикалом.

Кетоны - соединения, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами.

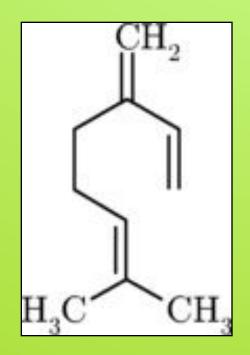
Альдегиды преобладают маслах лимонной травы, мелиссы, цитронеллы и эвкалипта лимонного.

К эфирным маслам с высоким содержанием кетона входят масла розмарина, шалфея, эвкалипта шаровидного и иссопа

Спирты (устар. алкого́ли) - органические соединения, содержащие одну или несколько гидроксильных групп.

Фенолы — органические соединения в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца.

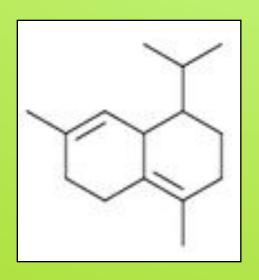
Спиртами богаты эфирные масла розы, померанца, мяты перечной, мирта, чайного дерева, сандалового дерева, пачули и имбиря.


Фенолами богаты эфирные масла гвоздики, корицы, тимьяна, душицы, чабера, кумина

Терпены

- **Терпены** класс углеводородов, вторичных растительных метаболитов.
- К терпенам относятся углеводороды, имеющие общую формулу (С₃Н₆)n.
- В больших количествах терпены содержатся в маслах хвои, мускатного ореха, бергамота, розы, лимона и сирени.

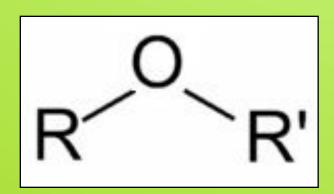
Мирцен монотерпен


Сесквитерпены

• Сесквитерпены состоят из очень длинных углеродных цепей. Эфирные масла, богатые этими соединениями, очень густые и обладают очень стойким запахом.

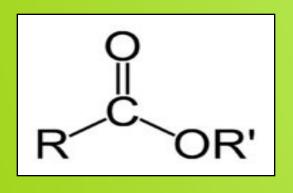
Они содержатся, в частности, в эфирных маслах ромашки аптечной, бессмертника, пижмы, тысячелистника и бархатцев.

Кадинен секвитерпен

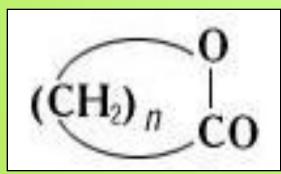

Простые эфиры

Простые эфиры-

производные спиртов и фенолов, в которых атом водорода гидроксогруппы заменен на углеводородный радикал



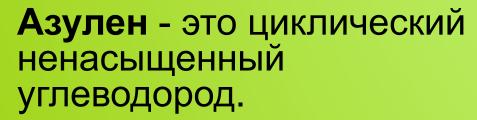
Простыми эфирами богаты масла корицы, гвоздики, аниса, базилика, эстрагона, петрушки и сассафраса.

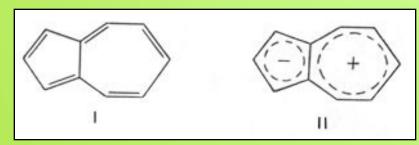


Сложные эфиры

Лактоны

Сложные эфиры — это производные карбоновых кислот, в которых гидроксильная группа заменена на углеводородный радикал.


Лактоны — сложные эфиры, имеющие дополнительное углеродное кольцо (циклические эфиры карбоновых кислот).


Высоким содержанием сложных эфиров отличаются эфирные масла пупавки, лаванды, шалфея, померанца и бергамота.

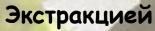
Лактонами богаты эфирные масла арники, девясила, донника, герберы .

Азулен

Большие концентрации его содержатся в маслах ромашки аптечной, полыни, тысячелистника обыкновенного, валерианы, зверобоя и гваякового дерева.

Методы получения эфирных

І.Метод гидродистилляции


II.Метод экстрагирования

III.Метод прессования

Дистилляцией получают эфирные масла из древесины, листвы, коры, корней

Прессингом получают кожурные аромамасла.

Анфлеражем и мацерацией на носитель получают растительные эссенции (эфирные масла) из цветков растений, например эфирные масла жасмина, розы, нероли

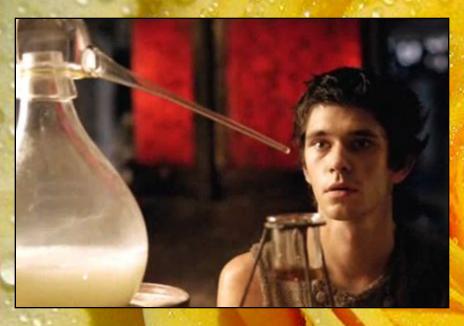
получают эфирные масла из лепестков, соцветий, коры и корней.

І.Метод

- а) перегонка с водой;
- б) перегонка с водяным паром;
- в) перегонка с водяным паром при повышенном давлении;
- г) перегонка с водяным паром при пониженном давлении;
- д) вакуумная перегонка

Метод экстрагирования

Различают:

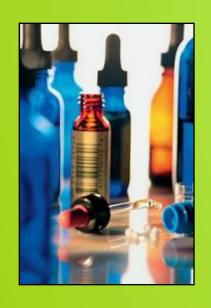

- а) экстракция низкокипящим растворителями (этиловый эфир, петролейный эфир, ацетон и др.); б) экстракция сжиженным газом (пропан, бутан, углекислота);
- мацерация цветочного сырья жирным маслом с нагреванием и без него;

в) экстракция жирами:

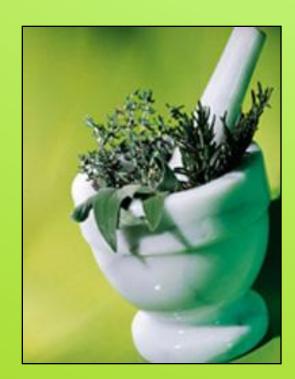
- анфлераж - выделяющееся эфирное масло из свежесобранного сырья (преимущественно из цветков) поглощается сорбентами.

Мацерация

«Свиной и говяжий жир подогревали в котле и в это сметанообразное варево швыряли лопатами свежие цветы, непрерывно помешивая...


анфелаж

Масло, испаряющееся из цветков, поглощается (адсорбируется) чистым, не имеющим запаха свиным или говяжьим жиром, нанесенным тонким слоем на стекло. Из образовавшейся душистой массы (помады) масло извлекают растворителем.

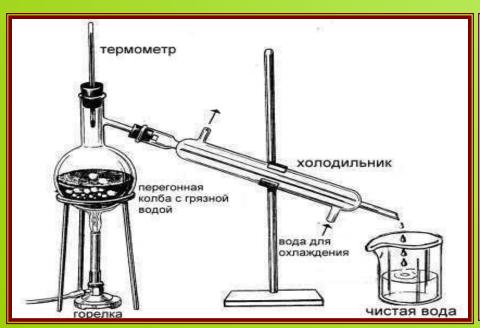

Метод прессования

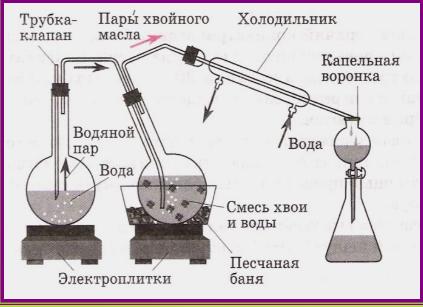
Используют в тех случаях, когда сырье содержит большое количество эфироносного масла. Данный метод применяется к цитрусовым, когда любого плода цитрусовых прессуют.

Практическая часть

І.Получение эфирного масла:

- •экстрагирование гексаном
- прессование
- •перегонка с водяным паром




Перегонка водой и водяным паром

Этот метод основан на испарении и затем конденсации паров жидкости и способности водяного пара увлекать эфирные масла.

Сырье:

зеленая масса растений: семена, стебли, листья, цветки (или комбинации двух и более частей), трава, кора, корни, хвойные лапки, мох.

Получение эфирного масла апельсина, ели и мяты.

Гидролаты (ароматические или эфирные воды) продукт при производстве эфирного масла. Гидролат масла

Состав эфирного масла

- 1.а о-пинен 1.62% и на
- 2. сабинен 0.92%
- 3. мирцен 4.64%
- 4. октаналь 1.27%
- 5. карен 0.31%
- 6. лимонен85.06%
- 7. цис-оцимен 0.08%
- 8. транс-оцимен 0.15%
- 9. октанол 0.07%
- 10. терпинолен 0.09%
- 11. линалоол 1.47%
- 12. нонаналь 0.20%
- **13.** цис-лимонен оксид 0.05%
- 14. транс-лимонен-оксид 0.05%
- 15. цитронеллаль 0.18%
- 16. α-терпинеол 0.11%
- 17. деканаль 1.19%

- 18 . транс-карвеол 0.05%
- 19. нераль 0.15%
- 20 . карвон 0.06%
- 21. гераниаль 0.24%
- 23 . α-кубебен 0.07%
- 25 . додеканаль 0.22%
- 26 . кариофиллен 0.07%
- 27. β-кубебен 0.08%
- 28 . β-фарнезен 0.03%
- 29. гермакрен D 0.04%
- 30. валенсен 0.34%
- 31. α-фарнезен 0.03%
- 32. селина-3(7),11-диен 0.02%
- 33. б-кадинен 0.09%
- 34. элемол 0.02%
- 36 . β-синенсаль 0.12%
- 37 . α-синенсаль 0.08%
- 38 . нуткатон 0.05%
- 39 . пентадеканаль 0.02%

Состав эфирного

Масла более 100 компонентов:

- 1. 2.072% сантен
- 2. 1.997% трициклен
- 3. 0.117% а-туйен
- 4.15.820% α-пинен
- 5. 17.080% камфен
- 6. 2.000% β-пинен
- 7. 0.665% мирцен
- 8. 0.123% α-фелландрен
- 9. 12.658% ∆3-карен
- 10. 0.385% пара-цимен
- 11. 7.543% лимонен
- 12. 0.104% ү-терпинен
- 13. 0.844% терпинолен
- 15. 5.475% камфора
- 16. 0.083% камфенгидрат

- 17.1.658% борнеол
- 18. 0.212% терпинен-4-ол
- 19. 0.106% пара-цимен-8-ол
- 20. 0.330% α-терпинеол
- 23. 27.376% борнилацетат
- 25. 0.072% α-терпинилацетат
- 26. 0.073% нерилацетат
- 27. 0.226% геранилацетат
- 28. 0.110% юнипен
- 29. 0.098% додеканаль
- 30. 1.258% кариофиллен
- 31. 0.680% гумулен
- 32. 0.116% β-бисаболен
- 33. 0.142% кариофилленоксид
- 34. 0.112% α-бисаболол

Качественный анализ ароматических масел.

- 1. Апельсин
- 2. Po3a
- 3. Ель
- Корица
 Грейпфрут

Обесцвечивание розового раствора KMnO4

Окисление по двойной связи

Обесцвечивание розового раствора КМпО4

цитраль

2,7- диметилдиен-2,6-октаналь

2,7- диметил-2,3,6,7тетрагидроксиоктаналь

(масло апельсина)

гераниол

Обесцвечивание розового раствора КМпО4

3,7- диметилоктадиен-2,6-ол- 1

3,7- диметилоктанпентаол- 1,2,3,6,7

(масло розы, грейпфрута)

Окисление по двойной связи

$$CH_3 - C = CH - CH_2 - CH_2 - C - CH = CH_2 + 3[O] + 3H_2O \xrightarrow{KMnO_4} CH_3 - C - CH - CH_2 - CH_2 - C - CH - CH_2$$

$$CH_3 - C = CH - CH_2 - CH_2 - CH_2 - CH_2 + 3[O] + 3H_2O \xrightarrow{KMnO_4} CH_3 - C - CH - CH_2 - CH_2$$

мирцен

(масло ели)

3-метиленол- 7-метил-октанпентаол-1,2,3,6,7

Обесцвечивание розового раствора КМпО4

Окисление по альдегидной группе

цитраль

Обесцвечивание розового раствора KMnO₄

2,7- диметилдиен-2,6-октаналь

2,7- диметилдиен-2,6-октановая кислота

(масло апельсина)

гераниол

Обесцвечивание розового раствора KMnO₄

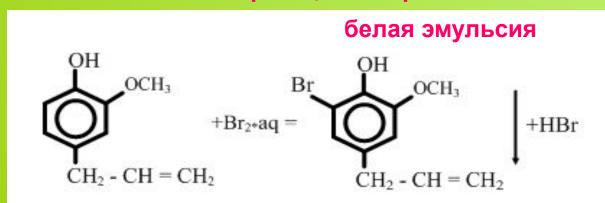
3,7- диметилоктадиен-2,6-ол- 1

(масло розы, грейпфрута)

3,7- диметилдиен-2,6октановая кислота

Обесцвечивание бурого раствора бромной воды

Качественная реакция на двойные связи


цитраль

2,7- диметилдиен-2,6-октаналь (масло апельсина)

Обесцвечивание бурого раствора Br₂

2,6-диметил-2,3,6,7- тетрабромоктаналь

Качественная реакция на фенол

эвгенол

Обесцвечивание бурого раствора Br,

4-аллил-2-метоксифенол

4-аллил-6-бром-2-метоксифенол

(масло корицы)

Качественная реакция на двойные связи

мирцен

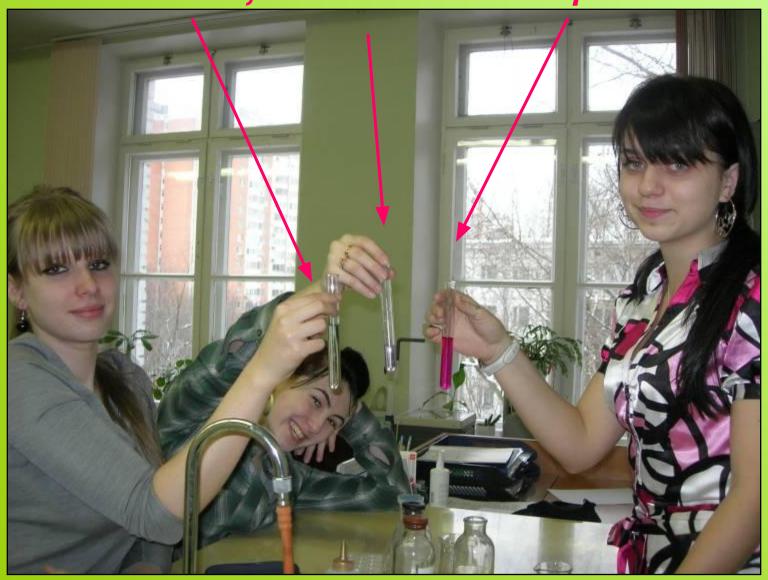
(масло ели)

Обесцвечивание бурого раствора Br₂

1,2,3,6,7-пентабром-3-бромметилен- 7-метилоктан

III.Определение рH-среды

(с помощью индикаторов)


Взаимодействие с метилвиолетом

У арматических масел pH-среда – нейтральная (индикатор окраску не изменил)

Фенолфталеин в масле, кислоте и в щелочи

