Лекция №16

химия d -ЭЛЕМЕНТОВ

Лекция №16

Химия металлов

ОСОБЕННОСТИ ХИМИИ d-ЭЛЕМЕНТОВ

Содержание

- 1. Общая характеристика d элементов
- 2. Кислотно-основные свойства оксидов и гидроксидов
- 3. Восстановительные и окислительные свойства d-элементов
- 4. d-элементы хорошие комплексообразователи
- 5. Физические свойства. Руды. Способы получения.
- 6. Ряд напряжения металлов. Химические свойства металлов.

H							He		
Li	Be	В	C	N	O	F	Ne		
Na	Mg	Al	Si	P	S	Cl	Ar		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni
Cu	Zn	Ga	Ge	As	Se	Br	Kr		
Rb	Sr	Y	Zr	Nb		Te	Ru	Rh	Pd
Ag	Cd	In	Sn	Sb	Te	I	Xe		
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt
Au	Hg	Tl	Pb	Bi	Po	At	Rn		
Fr	Ra								

Общая характеристика d - элементов

Валентными электронами являются от 1 до 10 d-e, а также 2, реже 1 s-e на внешнем уровне

d-элементы образуют три переходных ряда: в 4, 5, 6 периодах соответственно.

Все **d-элементы** являются металлами с характерным металлическим блеском

d-элементы и их соединения имеют характерные свойства: переменные СО, способность к образованию комплексных соединений, образование окрашенных соединений

Две группы d-элементов

$$(n-1)d^{1-5} ns^2$$

Свойственно проявление высших СО.

В высших СО d-элементы III, IV, V, VI, VII групп проявляют кислотные свойства, как p- элементы.

$$(n-1)d^{6-10} ns^2$$

Проявление высших СО маловероятно.

d-элементам VIII, I, II групп характерны СО от I до III.

В них проявляются металлические свойства.

	90	ρ	t пл.	t кип.
Cr [Ar] 3d ⁵ 4s ¹	1,6	7,19	1857	2672
Mn [Ar] 3d ⁵ 4s ²	1,5	7,44	1244	1962
Fe [Ar] 3d ⁶ 4s ²	1,8	7,87	1535	2750
$\mathbf{Co} [\mathbf{Ar}] \ \mathbf{3d}^{7} \mathbf{4s}^{2}$				
Ni [Ar] 3d ⁸ 4s ²				
Cu [Ar] 3d ¹⁰ 4s ¹	1,9	8,96	1083	2567
$Zn [Ar] 3d^{10}4s^2$	1,7	7,13	420	907
$\mathbf{A}\mathbf{g}$	1,9	10,5	962	2212

d-элементы характеризуются большой твердостью и высокими t пл. и t кип.

d-элементы характеризуются высокой плотностью, что объясняется малыми радиусами их атомов

d-элементы - хорошие проводники электрического тока, особенно те из них, в атомах которых имеется только один внешний **s**-электрон

Электроотрицательности возрастают от хрома к цинку, значит ослабевают металлические свойства

Химические свойства d-элементов

Сравнение d- и p-элементов в высших CO

Группа	р-элементы	d-элементы
VII	HClO ₄	HMnO ₄
VI	H ₂ SO ₄	H ₂ CrO ₄
\mathbf{V}	$HPO_3(HNO_3)$	HVO ₃

На d-подуровне наблюдается повышенная устойчивость конфигурации d^0 , d^5 , d^{10}

 $Ti: [Ar] 3d^2 4s^2$

Fe: $[Ar] 3d^6 4s^2$

 $Zn: [Ar] 3d^{10} 4s^2$

Ti: (II),III,<u>IV</u>

Fe: II, <u>III</u>, (VI)

Zn: II

 Ti^{+IV} : [Ar]3 d^04s^0

 Fe^{+III} : [Ar]3 d^54s^0 Zn^{+II}: [Ar]3 $d^{10}4s^0$

В отличии от s- и p-элементов у d-элементов устойчивость высшей СО возрастает вниз по подгруппе:

VIIB Mn: II,
$$\underline{IV}$$
, VI, VII

Tc
Re
(IV,V) \underline{VII}

VIB Cr: II, \underline{III} , VI

Mo
W
(IV, V), \underline{VI}

VB V: II, III, \underline{IV} , V

Nb
Ta
(III,IV), \underline{V}

Изменение кислотно-основных свойств оксидов и гидроксидов

Низшие Высшие СО Кислотные свойства CO

CrO

Cr(OH),

 Cr_2O_3

Cr(OH)₃

CrO₃
H₂CrO₄

основные

амфотерные

кислотные

MnO
Mn(OH)₂

MnO₂
Mn(OH)₄
MnO(OH)₂

Mn₂O₇ HMnO₄

основные

амфотерные

Fe,O,

кислотные

FeO

Fe(OH), Fe(OH), FeOOH

 FeO_3 , неуст.

основные

амфотерные, но в жестких условиях $\mathbf{H_2FeO_4}$, не получ.

кислотные

$$Cr(OH)_3 + H_2SO_4 = Cr_2(SO_4)_3 + H_2O$$

$$Cr(OH)_3 + NaOH = Na[Cr(OH)_4]$$

тетрагидроксохромит натрия

$$Cr_2O_3 + NaOH = NaCrO_2 + H_2O$$
хромит натрия

В кислой среде хроматы переходят в дихроматы:

$$CrO_4^{2-} + H^+ = Cr_2O_7^{2-} + H_2O$$

$$\mathbf{CrO}_{3}$$
 - кислотный оксид

$$CrO_3 + KOH = K_2CrO_4 + H_2O$$

хромат калия

Fe₂O₃ - обладает амфотерными свойствами, но в жестких условиях:

$$Fe_2O_3 + HCl = FeCl_3 + H_2O$$

$$Fe_2O_3 + KOH \stackrel{t}{=} KFeO_2 + H_2O$$

феррит калия

Ферриты - соли железистой кислоты HFeO,

Амфотерными являются оксид и гидроксид цинка: ZnO, Zn(OH),

$$Zn + HCl = ZnCl2 + H2$$

$$Zn + NaOH + H2O = Na2[Zn(OH)4] + H2$$

$$ZnO + NaOH = Na2[Zn(OH)4]$$

Изменение восстановительных свойств d-элементов

$$V^{2+}$$
, Cr^{2+} ...

Ni²⁺....

 Zn^{2+}

Энергичные восстановители Окисляется только сильными окислителями

Восстановителем не является

$$V^{2+}$$

 V^{2+} Cr^{2+} Mn^{2+} Fe^{2+} ... Ni^{2+} ... Zn^{2+}

Восстановительные свойства

Лабораторный опыт

$$Fe(OH)_2 \downarrow + O_2 + H_2O \rightarrow FeOOH \downarrow$$

$$Co(OH)_2 \downarrow + H_2O_2 \rightarrow CoOOH \downarrow$$

$$Ni(OH)_2 \downarrow +Br_2 +NaOH \rightarrow NiOOH \downarrow +NaBr+...$$

Восстановительные свойства усиливаются

В степени +II соединения хрома являются сильными восстановителями:

$$Cr(OH)_2 + H_2O + O_2 = Cr(OH)_3$$

Соли Fe(II) легко окисляются и переходят в Fe(III)

$$FeSO_4 + Cl_2 = FeCl_3 + Fe_2(SO_4)_3$$

Окисление солей железа (III) в щелочной среде приводит к образованию ферратов - соединений железа (VI)

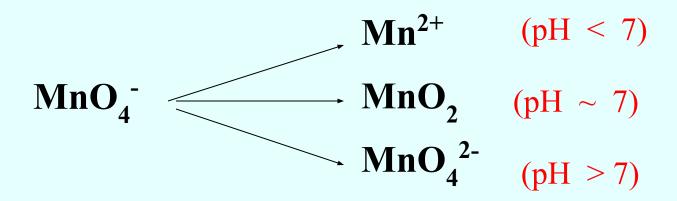
$$Fe_2O_3 + Cl_2 + KOH \stackrel{t}{=} K_2FeO_4 + KCl + H_2O$$
 окислительно-щелочное плавление

Изменение окислительных свойств d-элементов

В рамках одной декады:

$${f Ti}^{IV}$$
 ${f V}^V$ ${f Cr}^{VI}$ ${f Mn}^{VII}$ ${f Fe}^{VI}$ Усиление окислительных свойств

$$\mathbf{K_2Cr_2O_7} + \mathbf{H_2O_2} + \mathbf{H_2SO_4} \stackrel{9\text{фир}}{=} \mathbf{CrO_5} + \mathbf{K_2SO_4} + \dots$$
 пероксид хрома


$$KMnO_4+H_2O_2+H_2SO_4 = MnSO_4+O_2+...$$

$$K_2FeO_4 + Mn(NO_3)_2 + HNO_3 \rightarrow Fe(NO_3)_3 + KMnO_4 + ...$$

Дихроматы и хроматы являются сильными окислителями:

$$K_2Cr_2O_7 + KJ + H_2SO_4 = J_2 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$$

Перманганаты - сильнейшие окислители:

Ферраты - сильнейшие окислители

Для d-элементов характерно образование комплексных соединений.

$$CoCl_2 + 4KSCN \rightarrow K_2[Co(SCN)_4] + 2KCl$$

Эту способность используют:

1) для очистки d-элементов от примесей

$$Ni + 4CO = [Ni(CO)_4]$$

Тетракарбонил никель

Карбонилы являются особым типом комплексных соединений.

$$[Fe(CO)_5]$$
 пентакарбонил железа

 $[Co(CO)_4]$ тетракарбонил кобальта

2) Для разделения близких по свойствам элементов:

ZnSO₄
$$\longrightarrow$$
 Na₂[Zn(OH)₄]_{pactbop} $+$ NaOH_{u3быток} \longrightarrow Cd(OH)₂+ Na₂SO₄

3) для перевода малорастворимых соединений в раствор:

$$AgCl \downarrow + 2Na_2S_2O_3 = Na_3[Ag(S_2O_3)_2] + NaCl$$

4) обнаружение ионов металлов в растворе:

$$Fe^{2+} + K_3[Fe(CN)_6] = KFeFe(CN)_6 + \dots$$

$$Fe^{3+} + 6 SCN^{-} = [Fe(SCN)_{6}]^{3-}$$

$$CoSO4 + KNO2 = K3[Co(NO2)6] + NO + ...$$

Для обнаружения ионов калия

ФИЗИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

- высокая электропроводность
- высокая теплопроводность
- пластичность
- твердость
- тугоплавкость

Природные руды металлов

Руды – это природные соединения металлов.

Оксидные руды:

-Fe₂O₃ -гематит;

-Al₂O₃ -корунд;

-MnO₂ -пиролюзит

- ТіО, – рутил

- FeO·Cr₂O₃ - хромистый железняк

2 Сульфидные руды:

- FeS, пирит (железный колчедан)
- CuFeS, халькопирит
- MoS, молибденит
- ZnS сфалерит (цинковая обманка)
- PbO галенит (свинцовый блеск)

Талогенидные руды (в основном щелочных и щелочноземельных металлов):

NaCl – галит (поваренная соль) KCl – сильвин KCl·MgCl,·6H,O -карналит

(4) Сульфатные, фосфатные и карбонатные руды:

 $CaSO_4 \cdot 2H_2O - гипс$ $Ca_3(PO_4)_2 - фосфорит$ $CaCO_3 - мрамор, известняк$ $CuCO_3 \cdot Cu(OH)_2 - малахит$ $MgCO_3 - магнезит$

Промышленно перерабатываются в основном оксидные, сульфидные и галогенидные руды.

РУТИЛ ТіО2

Rutile/Goethite Photo from MII, courtesy of the Smithsonian Institution

Пиролюзит

MnO₂

Пирит

FeS₂

Способы получения металлов

Определяются характером сырья (рудой)

1. Пирометаллургия — окислительный обжиг сульфидов и восстановление металлов из оксидов при высокой температуре.

$$FeS_2 + O_2 = Fe_2O_3 + SO_2$$

$$Fe_2O_3 + CO \longrightarrow Fe + CO_2$$

2. Электрометаллургия - электролиз расплавов или растворов солей

$$ZnSO_4 + H_2O \longrightarrow Zn \downarrow + O_2 \uparrow + H_2SO_4$$

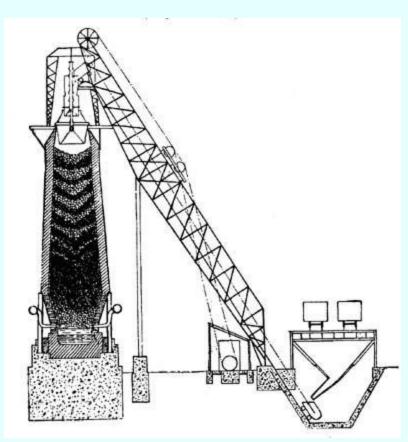
3. Гидрометаллургия - выделение металлов из растворов их солей более активными металлами

Гидрометаллургический способ извлечения золота

1.
$$Au + KCN + O_2 + H_2O = K[Au(CN)_2] + KOH$$

$$K[Au(CN)_2] + Zn = K_2[Zn(CN)_4] + Au$$
 цементация золота

золото самородное



Au

2. Растворение золота в ртути с последующей разгонкой амальгамы.

Амальгама – сплав Hg с металлами (Zn, Cu, щелочные металлы).

ПОЛУЧЕНИЕ ЖЕЛЕЗА

1 Доменный процесс:

Руда
$$\longrightarrow$$
 чугун \longrightarrow сталь

Fe₂O₃ $\stackrel{CO, t}{\longrightarrow}$ Fe₃O₄ $\stackrel{CO, t}{\longrightarrow}$ FeO

Fe(C)

Чугун: Fe+ С (1,7-5%)

Получение металла высокой чистоты

1. Разложение карбонильных комплексов (Ni, Co,

$$Fe + 5CO = Fe(CO)_{5}$$
Порошокр_t, t

желтая жидкость пентакарбонил железо

- 2. Иодидное рафинирование.
- 3. Электролиз водных растворов солей.

РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Li Cs Ca Na Mg Al Zn Fe Ni Pb H₂ Cu Ag Hg Au

Усиление восстановительной способности атомов

Li⁺Ca²⁺Na⁺Mg²⁺Al³⁺Zn²⁺Fe²⁺Ni²⁺Pb²⁺H⁺Cu²⁺Ag⁺Hg²⁺Au³⁺

Усиление окислительной способности ионов

Растворение металлов в кислотах и щелочах

1. Кислоты неокислители: HCl, H₂SO₄, HBr...

$$Zn + HCl = H_2 \uparrow + ZnCl_2$$

 $Fe + HCl = H_2 \uparrow + FeCl_2$

2. Кислоты окислители: HNO_3 , $H_2SO_{4\kappa o \mu \mu}$, ...

$$Hg + HNO_{3\mu36} = Hg(NO_3)_2 + NO + H_2O$$

$$Cd + H_2SO_{4\kappa OHII} = CdSO_4 + SO_2 + H_2O$$

$$\mathbf{Sn} + \mathbf{HNO}_{3\kappa\mathbf{OHII}} = \mathbf{H}_2\mathbf{SnO}_3 \downarrow + \mathbf{NO}_2 + \mathbf{H}_2\mathbf{O}$$
 β - оловянная кислота

3. Смеси кислот: $HNO_3 + HCl - «царская водка»$ $HNO_3 + HF$

$$Nb + HNO_3 + HF = H_2[NbF_7] + NO + H_2O$$

 $Ag + HNO_3 + HCl = H[AgCl_2] + NO + H_2O$

4. Взаимодействие с щелочами:

$$Zn + NaOH + H_2O = Na_2[Zn(OH)_4] + H_2$$

 $Ge + O_2 + 2NaOH + 2H_2O = Na_2[Ge(OH)_6]$

5. Взаимодействие с гидратом аммиака:

$$Zn + NH_3 \cdot H_2O = [Zn(NH_3)_4](OH)_2 + H_2\uparrow$$
 $Cd + O_2 + NH_3 \cdot H_2O = [Cd(NH_3)_4](OH)_2 + H_2O$

6. Окислительное щелочное плавление (V,Nb, Ta, Cr, MO, W...):

$$V + O2 + Na2CO3 = Na3VO4 + CO2 \uparrow$$

$$Cr + O2 + NaOH = Na2 Cr O4 + H2O$$

Полученные соли легко растворяются в воде