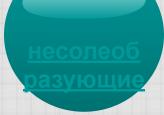


Разложение оксидов

и их некоторые другие реакции

Автор Твердохлебова Т.М. Г.У. «Средняя школа №5» г. Риддер


Классификация оксидов

ОКСИДЫ

задан ия

Основные оксиды

Способы получения

- А) металл+ кислород
- Cu+O₂→CuO
- Б) разложение нерастворимых оснований
- Cu(OH)2→CuO+H2O
- В)разложение солей
- CaCO₃→CaO+CO₂

Химические свойства

• 1)с водой, если образуется растворимое основание

Na₂O+H₂O→ NaOH

• 2)с кислотными оксидами

Na₂O+CO₂ → Na₂CO₃

• 3)с кислотами

Na₂O+HCl→NaCl+H₂O

• 4) с амфотерными оксидами

Na₂O +ZnO→Na₂ZnO₂

• 5) С восстановителями

CuO+H₂ → Cu+H₂O

Кислотные оксиды

- Способы получения
- А) неметалл+ кислород
- C+O₂→CO₂
- Б) разложение кислоты
- H2CO3→H2O+CO2
 - В)разложение солей
- © CaCO₃→CaO+CO₂
- ©a(HCO3)2→CaCO3+CO2+

 PH2O

- Химические свойства
- 1) с основными оксидами
- Na2O+CO2→Na2CO3
- 2) со щелочами

NaOH+CO₂ → Na₂CO₃ +H₂O

• 3) с водой

H2O+CO2→H2CO3

• 4) с амфотерными

ZnO+CO₂ → ZnCO₃

Амфотерные оксиды

- Способы получения
 - А) металл+ кислород
- Zn+O2→ZnO
- Б) разложение амфотерных оснований
- Zn(OH)2→ZnO+H2O
- В)разложение солей
- ZnCO3→ZnO+CO2

- Химические свойства
- 1)с кислотными оксидами
- ZnO+CO2→ZnCO3
- 2) со щелочами
- NaOH +ZnO→Na2ZnO2 + H2O
- 3)с кислотами
- ZnO+HCI→ZnCl2+H2O
- 4) с основными оксидами
- Na₂O +ZnO→Na₂ZnO₂

Индифферентные оксиды (несолеобразующие)

Получение 1)CO₂+C=2CO 2)HCOOH=CO+H₂O

Химические свойства

- 1) с неметаллами
- CO+O2=CO2
- · CO+Cl2=COCl2
- 2)со щелочами
- CO + NaOH=HCOONa
- 3) с основными оксидами
- FeO+CO=Fe+CO2

Задания

- 1). Из перечня веществ выпишите отдельно оксиды основные, кислотные, амфотерные, назовите их: K2O, SO₃,CO₂, MgO, CaO, P₂O₅, ZnO, Fe₂O₃, PbO, Na₂O,CrO,Cr₂O₃,CrO₃.
- 2)Допишите уравнения реакций

A) CaO + H₂SO₄→

E)SO₃ + H₂O→

U

B) CaCO₃ →

F) SO₃ +NaOH→

C) K+O₂ \rightarrow

K) Fe2O3 + SO3 →

D) CaO+ H₂O→

L)Fe(OH)₃ →

3)Какая масса оксида меди(II) вступит в реакцию с водородом, если образуется 32г меди?

Глоссарий

Оксиды металлов с валентностью металла 1 и 2 Например: Na₂O, MgO

Оксиды неметаллов и металлов с валентностью 4-7 например:CO₂, Mn₂O₇

Оксиды элементов главных и побочных подгрупп с валентностью 2-5 BeO, Cr₂O₃,V₂O₅

Индеферентные образованы неметаллами в валентностью 1-2 Например NO,CO,N₂O

Оксиды сложные вещества, состоящие из двух элементов один из которых кислород.

Сложные вещества, состоящие из атомов водорода и кислотного остатка H2CO₃-угольная ,HCI-соляная

Сложные вещества, состоящие из атомов металла и гидроксогруппы Zn(OH)2 гидроксид Zn, NaOH-гидроксид Na

