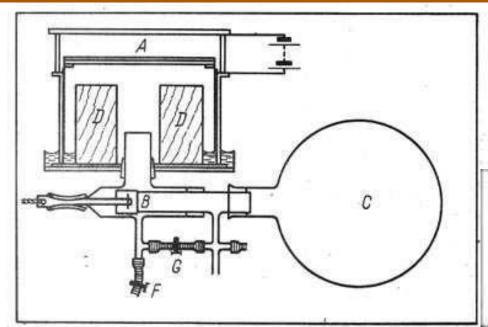
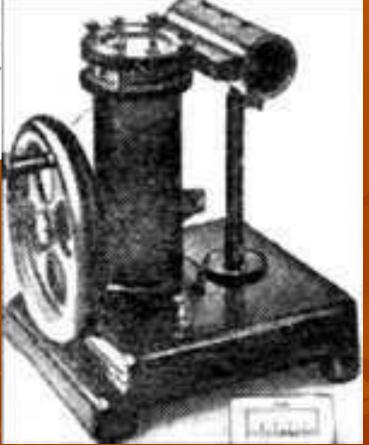
Ядро атома: методы исследования

Методы наблюдения и регистрации элементарных частиц

Счетчик Гейгера.

Действие прибора основано на явлении ударной ионизации газа: пролетающая заряженная частица ионизирует молекулы газа образовавшиеся электроны ускоряются электрическим полем внутри счетчика до энергий необходимых для ударной ионизации. Регистрирует электроны и у – кванты. Позволяет регистрировать только


факт пролета частицы.


жатод (-) анод (+) источник радиактивности к высоковольтному источнику питания и измерительным приборам окно из слюды

Камера Вильсона.

Действие прибора основано на конденсации перенасыщенного пара (воды или спирта) на ионах, образующихся вдоль траектории полета заряженной частицы. Поместив камеру Вильсона в однородное магнитное поле и измерив радиус кривизны трека (следа пролетевшей частицы), можно определить удельный заряд частицы. Позволяет регистрировать траектории заряженных частиц.

Пузырьковая камера.

Действие основано на образование пузырьков пара в перегретой жидкости (жидком водороде или пропане) на ионах, возникающих вдоль траектории полета заряженной частицы. Преимущество пузырьковой камеры перед камерой Вильсона: большая плотность рабочего вещества (можно наблюдать серию превращений частиц). Позволяет регистрировать траектории заряженных частиц.

Метод толстослойных фотоэмульсий.

Используется ионизирующее действие заряженных частиц на фотоэмульсию. Позволяет регистрировать редкие явления.

Строение ядра

Ядра всех атомов из протонов

(элементарный заряд +e, масса $m_p = 1,675*10^{-27} kг$)

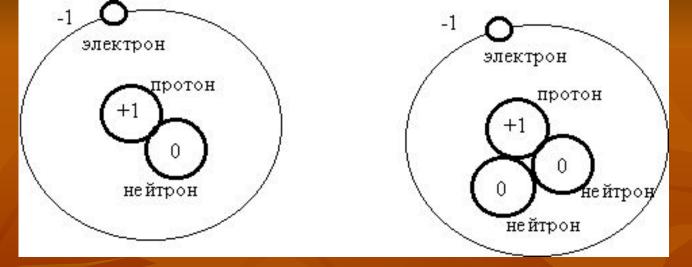
нейтронов (заряд ядра равен нулю, масса $m_n = 1,675*10^{-27}$ кг).

Общее название протонов и нейтронов – нуклоны.

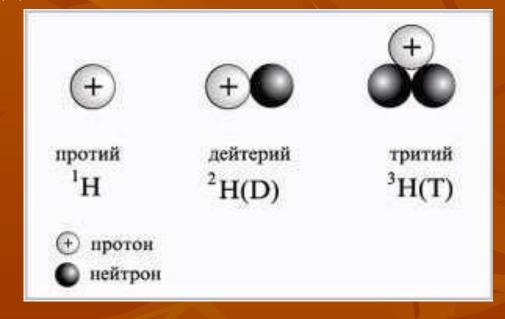
Между нуклонами действует короткодействующие силы притяжения – **ядерные силы.**

Число протонов в ядре обозначается Z, и совпадает с порядковым номером элемента в таблице Менделеева. Заряд ядро равен Ze.

Число нейтронов в ядре обозначается N.


Общее число нейтронов и протонов в ядре обозначается A и называется массовым числом: A = Z + N

Обозначение ядер: $_{A}^{Z}X$, где X обозначение химического элемента. Например 11H — ядро атома **водорода (протон)**


Изотопы.

Так называются атомы, имеющие одинаковый заряд ядра, но различную массу. Все изотопы одного и того же элемента обладают одинаковыми химическими свойствами, но могут отличаться радиоактивностью.

Например, ²H- **дейтерий** и ³H- **тритий** являются изотопами водорода (тритий радиоактивен)

Атомы изотопов водорода

Ядра изотопов водорода

Применение изотопов.

- **Метод меченых атомов**(биология, физиология, медицина, промышленность, археология).
- **Источники** y лучей («кобальтовая пушка» изотопом $_{27}^{60}$ Co).
- **Ускорение мутаций** для искусственного отбора (в сельском хозяйстве).