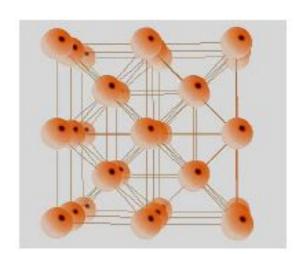


H

представители VIB группы ПСХЭ

Подгруппа хрома


3 4 5 <u>6</u> 7 8 9 10 11 12

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg

Cr – хром, Мо – молибден, W – вольфрам

Свойства элементов

	Cr	Mo	W
Т.пл., ∘С	1860	2620	3410
Т.кип., ∘С	2680	4630	5700
$\Delta_{\rm v}{\sf H}^{\rm 0}$, кДж/моль	348.8	594.1	799.1
d, г/см ³	7.23	10.22	19.30
$E^0(M^{3+}/M^0)$, B	-0.74	-0.20	-0.11

Структурный тип α-Fe решетка кубическая объемоцентрированная

Химические свойства Мо, W

- 1. Не растворяются в кислотах-неокислителях
- 2. Окисляются в кислой среде:

$$W + 2HNO_3 + 8HF = H_2[WF_8]$$

 $Mo + 2HNO_3 + 2HCI = MoO_2CI_2 + 2NO + 2H_2O$

3. Окисляются в щелочных расплавах

$$Mo + 3KNO_3 + 2KOH = K_2MoO_4 + 3KNO_2 + H_2O$$

4. Окисляются кислородом при нагревании

$$2\text{Mo} + 3\text{O}_2 = 2\text{MoO}_3$$
 (400 °C)

5. Реагируют с галогенами

Mo +
$$3F_2$$
 = MoF₆ 2Mo + $5CI_2$ = 2MoCI₅
W + $3CI_2$ = WCI₆ 2W + $5Br_2$ = 2WBr₅

Получение Мо, W

Редкие элементы: по ~10⁻³ мас. % в земной коре

Минералы: MoS_2 молибденит сульфид $CaWO_4$ шеелит оксиды $(Fe,Mn)WO_4$ вольфрамит

 $2MoS_2 + 7O_2 = 2MoO_3 + 4SO_2$ обжиг при $600 \, ^{\circ}\text{C}$ $MoO_3 + 3H_2 = Mo + 3H_2O$ восстановление при $600 \, ^{\circ}\text{C}$

 $4(Fe,Mn)WO_4 + 4Na_2CO_3 + O_2 = 4Na_2WO_4 + 4CO_2 + 2(Fe,Mn)_2O_3$

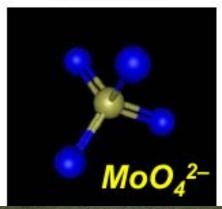
 $Na_2WO_4 + 2HCI = WO_3 + 2NaCI + H_2O$ $WO_3 + 3H_2 = W + 3H_2O$

Применение Mo, W

- -для производства жаропрочных сплавов
- -в радиотехнике и электронике
- -в авиапромышленности
- -для производства сверхтвердых сплавов
- -в химической промышленности
- -для измерения высоких (>2500 К) температур
- -MoO₃ в качестве катализатора
- -MoS₂ в качестве твердой смазки

- 1. Наиболее устойчивая с.о. для W
- 2. Триоксиды MoO₃ т.пл. 796 °C, WO₃ т.пл. 1472 °C

светло-желтые, слоистая структура – октаэдры MO₃ нерастворимы в воде


$$MO_3 + 2KOH = K_2MO_4 + H_2O$$

$$M = Mo, W$$

$$K_2MO_4 + 2HCI = H_2MO_4 \downarrow + 2KCI$$
 очень слабые кислоты

$$K_2MO_4 + 2HCI$$
 (конц) = $MO_2CI_2 + 2H_2O$

$$(NH_4)_6Mo_7O_{24} = 7MoO_3 + 6NH_3 + 3H_2O$$

(400 °C)

3. Галогениды МХ₆

молекулярная структура, гигроскопичны

 ${
m MoF}_6$ — бесцветная жидкость ${
m WF}_6$ — светло-желтая жидкость ${
m WCI}_6$ — темно-синие кристаллы

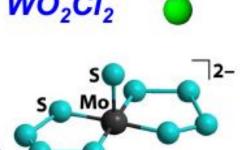
$$WCI_6 + 3H_2O = WO_3 + 6HCI$$

4. Пероксиды

$$MoO_3 + 2KOH + 4H_2O_2 = K_2Mo(O_2)_4 + 5H_2O$$

 $K_2Mo(O_2)_4$ красный $K_2W(O_2)_4$ желтый

5. Производные молибденила, вольфрамила


MoO_2^{2+} молибденил, WO_2^{2+} вольфрамил

$$WCl_6 + 2H_2O \xrightarrow{HCl} WO_2Cl_2 + 4HCl$$

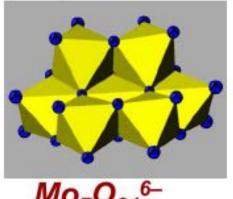
$$MoO_3 + 2HCI = MoO_2CI_2 + H_2O$$

$$MoO_3 + H_2SO_4 = MoO_2(SO_4) + H_2O$$

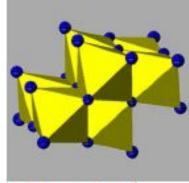
$$2CsCl + MoO_3 + 2HCl = Cs_2[MoO_2Cl_4] + H_2O$$

14 [MoS(S₄)₂]²⁻

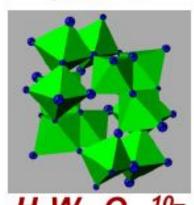
6. Тиосоли


$$(NH_4)_6Mo_7O_{24} + 21H_2S + 3H_2SO_4 = 7MoS_3 \downarrow + 3(NH_4)_2SO_4 + 24H_2O$$

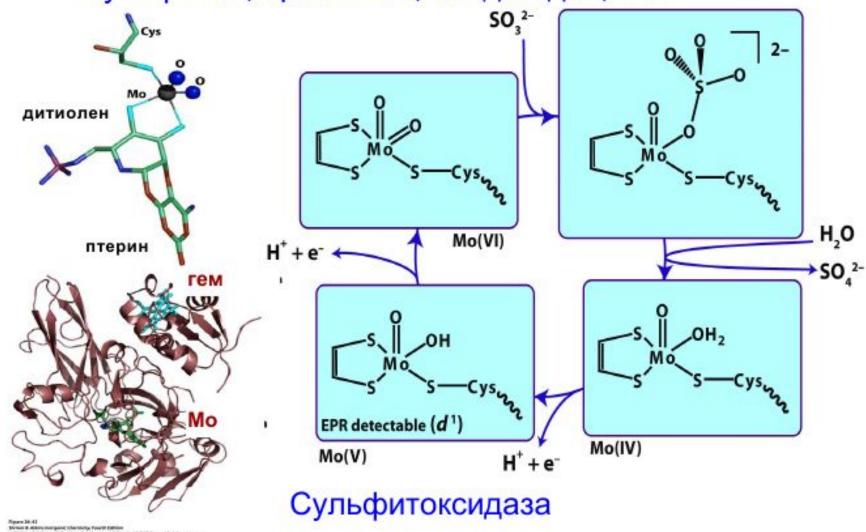
$$K_2WO_4 + 4H_2S \xrightarrow{KOH} K_2WS_4 + 4H_2O \quad (+ HCI \rightarrow WS_3\downarrow)$$


$$Na_2MoO_4 + 4Na_2S_2 + S + 4H_2O = Na_2[MoS(S_4)_2] + 8NaOH$$

7. Полимеризация молибдатов, вольфраматов


$$7\text{MoO}_4^{2-} + 8\text{H}^+ \Leftrightarrow \text{Mo}_7\text{O}_{24}^{6-} + 4\text{H}_2\text{O}$$
 pH ≈ 7
 $8\text{Mo}_7\text{O}_{24}^{6-} + 20\text{H}^+ \Leftrightarrow 7\text{Mo}_8\text{O}_{26}^{4-} + 10\text{H}_2\text{O}$ pH ≈ 4
 $\text{Mo}_8\text{O}_{26}^{4-} + 4\text{H}^+ + 6\text{H}_2\text{O} \Leftrightarrow 8\text{H}_2\text{MoO}_4$ pH ≈ 1

Mo₈O₂₆4-

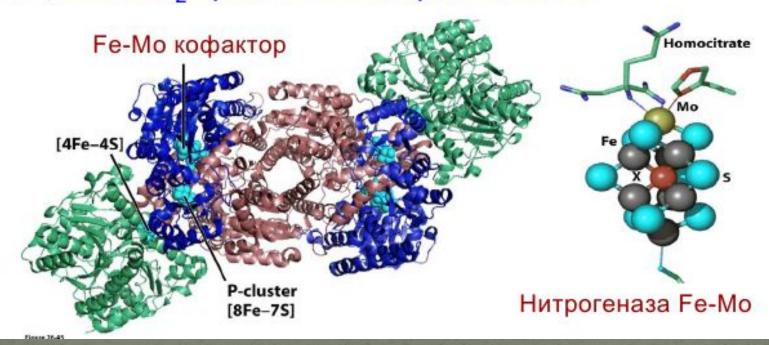


$$H_2W_{12}O_{42}^{10-}$$

$$12WO_4^{2-} + 14H^+ \Leftrightarrow H_2W_{12}O_{42}^{10-} + 6H_2O$$
 pH ≈ 6
 $H_2W_{12}O_{42}^{10-} + 4H^+ \Leftrightarrow H_2W_{12}O_{40}^{6-} + 2H_2O$ pH ≈ 3
 $5H_2W_{12}O_{40}^{6-} + 6H^+ \Leftrightarrow 6W_{10}O_{32}^{4-} + 8H_2O$ pH ≈ 2
 $W_{10}O_{32}^{4-} + 4H^+ + 8H_2O \Leftrightarrow 10H_2WO_4$ pH ≈ 1

Биологическая роль Мо, W

1. Mo: катализ переноса кислорода воды для окисления сульфитов, арсенитов, альдегидов, CO



Биологическая роль Мо, W

2. Mo: катализ переноса кислорода при восстановлении нитратов

$$E^0(NO_3^-/NO_2^-) = +0.40$$
 В при pH = 7

- 3. Мо: в составе нитрогеназы для фиксации азота
- 4. W: катализ образования связи С–Н при нефотосинтезном поглощении СО₂ простейшими организмами

