METAH и его свойства

Предельные углеводороды. Метан. Алканы.

 Общая формула предельных углеводородов. С_пН_{2n+2} где n≥1. При образовании связей атома углерода с водородом образуется четыре SP3 электрона, взаимно отталкиваясь друг от друга занимает тетраэдрическое положение в пространстве, под углом 109°28', расстояние между атомами 0,154 HM.

Физические свойства.

Метан – газ, без цвета и запаха, легче воздуха (Mr = 16), малорастворим в воде.

Химические свойства.

- Горит. С воздухом образует взрывчатые смеси.
- $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- При недостатке кислорода протекает неполное сгорание.
- $\bullet CH_4 + O_2 \rightarrow C + 2H_2O$
- В присутствии катализаторов (нитрозных газов) могут образоваться метиловый спирт и формальдегид.

$$CH_4 + O_2 \rightarrow H-C=O + H_2O$$

H

•
$$2CH_4 + O_2 \rightarrow 2H_3C-OH$$

- При сильном нагревании получают сажу.
- $CH_4 \rightarrow C + 2H_2$
- Промежуточный продукт
- 2CH₄ → C₂H₄ + 2H₂; 2CH₄ → C₂H₂ + 3H₂
 Ацетилен в 2 раза дешевле полученного из карбида кальция. Конверсией получают чистый водород.
- Метан стоик при обычных условиях к щелочам, кислотам и окислителям. Он не способен к реакциям присоединения, зато для него характерны реакции замещения.

 На свету с Cl₂ или Br₂ эта реакция протекает по свободно-радикальному механизму со взрывом.

■
$$CH_{4} + Cl^{*} \rightarrow CH_{3} + HCl$$

 $CH_{4} + Cl_{4} \rightarrow CH_{3} + Cl^{*}$
 $CH_{3} + Cl_{4} \rightarrow CH_{4} + Cl^{*}$
 $CH_{3} + Cl_{4} \rightarrow CH_{4} + Cl^{*}$
 $CH_{4} + Cl_{5} \rightarrow CH_{5} + Cl^{*}$
 $CH_{5} + Cl_{5} \rightarrow CCl_{5} + Cl^{*}$
 $CH_{5} + Cl_{5} \rightarrow CCl_{5} + Cl^{*}$

Обрыв реакции.

- Реакция может обрываться, если прореагирует два радикала, типа: $CH * + CH * \to C_2H_6; CH_3* + CI* \to CH_3CI; CI* + CI* \to CI_2$
- Хлористый метил газ легко сжижающийся, используется как хладоагент.
- Остальные жидкости применяются как растворители смол, каучуков и д.р. органических веществ. ССІ используется в огнетушителях, там, где нельзя использовать воду.

Метан в природе.

- Метан широко распространён в природе, он является главной составной частью многих природных газов. (90-98%).
 Образуется при сухой перегонке древесины, торфа, кокса, при крекинге нефти. Кроме метана в попутных газах есть этан, пропан, бутан и пентан.
- Лабораторный способ получения метана.
- CH₄COONa + NaOH \rightarrow CH₄ + Na₂CO₃ Al₄C₃ + 12H₂O \rightarrow 3CH₄ + 4 Al(OH)₃

Синтетический способ получения метана.

$$C + 2H_{2}^{\text{Ni(1200 °C)}} C + 2H_{2}^{\text{Ni,NiCO3,Co}} CH_{4}^{\text{I}};$$

$$CO + 3H_{2} \rightarrow CH_{4} + H_{2}O;$$

$$CO_{2}^{\text{Ni,NiCO3,Co}} CH_{4} + 2H_{2}O;$$

$$CO_{2} + 4H_{2} \rightarrow CH_{4} + 2H_{2}O;$$

 Эти способы получения метана имеют промышленное значение.

Применение.

Используется как топливо, для получения водорода, этилена, ацетилена, сажи, для получения спирта и формальдегида.

 Получение синтез-газа который используется в доменном процессе:

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

$$CH_4 + HNO_3 \rightarrow CH_3 - NO_2 + H_2O$$

Задачи:

 Определите плотность метана по воздуху. $\rho = 16/29 = 0.55$

Определите массу 1 литра метана.

-m = 16/22,4 = 0,715

Определите массу метана, полученного из 1м³ природного газа, содержащего 90% метана, находящимся в баллоне под давлением 40 атмосфер.

- 90% от 1м³ = 900литров;
 900литров 40 атм.= 36 м³
- $-22,4 M^3 16K\Gamma$
- $36 \text{ M}^3 \text{X}(=25.7 \text{ K}\Gamma)$.