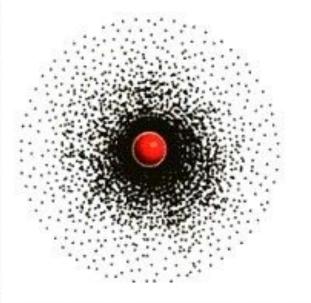

Движение электрона в атоме

Учитель химии
МБОУ СОШ № 7
г. Дубна, Московской области
Миронова Елена Анатольевна

Двойственная природа электрона


Электрон имеет массу и заряд, как частица.

Электрон проявляет волновые свойства — способен к дифракции.

Электрон в атоме можно рассматривать как частицу, которая при движении проявляет волновые свойства. Т.е. нельзя описать движение электрона в атоме определенной траекторией (орбитой).

Электрон в атоме может находиться в любой точке пространства вокруг ядра, однако вероятность его пребывания в разных местах атомного пространства различна.

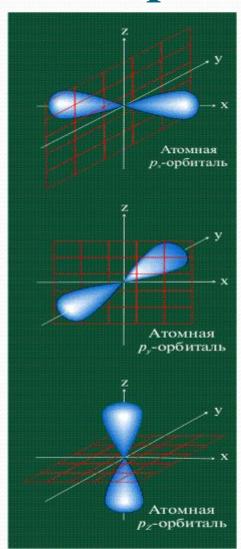
Атомная орбиталь — область вокруг ядра атома, в которой наиболее вероятно нахождение электрона.

В настоящее время считается, что состояние каждого электрона в атоме определяется с помощью четырех квантовых чисел.

Первое из них называется *главным квантовым числом*. Оно обозначается буквой «п» и принимает значение простых целых чисел. Главное квантовое число определяет энергию электрона, степень удаленности от ядра, размеры электронной обитали.

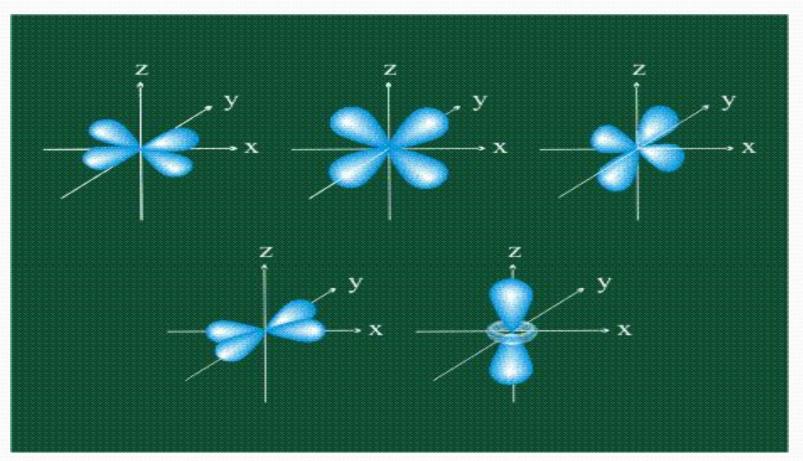
n	1	2	3	4	5	6	7
Обозначение	K	L	M	N	0	Р	Q
энергетического слоя							

Второе квантовое число называется орбитальным.

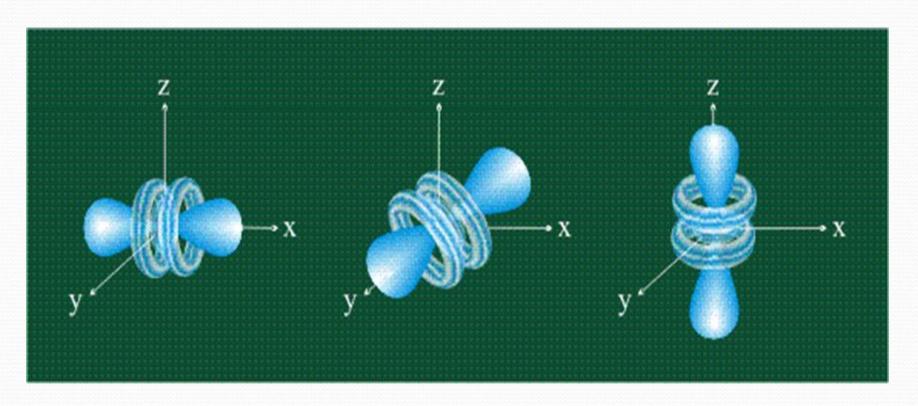

Оно обозначается буквой «l» и принимает значения от 0 до n-1. Орбитальное квантовое число определяет орбитальный момент импульса электрона, а также пространственную форму электронной орбитали.

l	0	1	2	3	4
Буквенное обозначение подуровня	S	p	d	f	g
Форма орбитали		8	4	сложн.	сложн.

Формы атомных орбиталей



s-орбиталь



р-орбиталь

Формы атомных орбиталей

Формы атомных орбиталей

f-AO

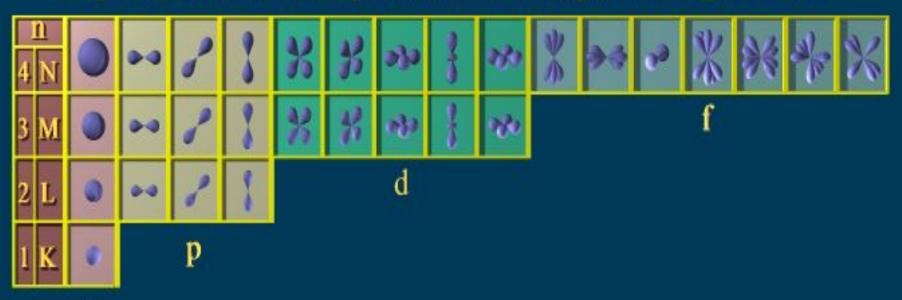
Число подуровней, на которые расщепляется энергетический уровень равно номеру уровня.

n	I	Обозначение подуровня
1	0 (одно значение)	1s
2	0;1 (два)	2s; 2p
3	0;1;2 (три)	3s; 3p; 3d

Энергетический подуровень — это совокупность электронных состояний, характеризующихся определенным набором квантовых чисел n u l.

Магнитное квантовое число троеделяет значения проекции орбитального момента на одной из осей, а также пространственную ориентацию элементарных орбиталей и их максимальное число на электронном подуровне. —

Оно принимает все целочисленные значения от -l до +l.


Например, при
$$l=0$$
 $m_l=0;$ при $l=1$ $m_l=-1; 0; +1;$ при $l=2$ $m_l=-2; -1; 0; +1; +2;$

Любому значению l соответствует (2l+1) возможных расположений электронного облака данного типа в пространстве.

Магнитное квантовое число

$$M_z = \frac{h}{2\pi} m_1$$
 $m_1 = -1,...,-1,0,+1,...,+1$

Пространственная ориентация электронных орбиталей

Четвертое квантовое число называется спиновым квантовым числом. Оно обозначается m_s или S и может принимать два значения +1/2 и -1/2. Наличие спинового квантового числа объясняется тем, что электрон обладает собственным моментом импульса(«спином»), не связанным с перемещением в пространстве вокруг ядра.

$$-\frac{1}{2}$$
 $+\frac{1}{2}$

Общая характеристика состояния электрона в многоэлектронном атоме определяется <u>принципом Паули</u>: в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми.

На одной орбитали могут находиться не более двух электронов, отличающихся друг от друга спинами. Максимальная емкость энергетического подуровня -2(2+l) электронов, а уровня $-2n^2$.

Энергетические уровни атома

Энергетический уровень	1	2	3	4	5
Максимальное					
число	2	8	18	32	50
электронов					

Энергетические подуровни

Вид энергетического подуровня	Число АО	Обозначение АО	Число электронов
<i>s</i> –подуровень	1	s –AO	2
<i>p</i> -подуровень	3	p –AO	6
<i>d</i> -подуровень	5	d-AO	10
f-подуровень	7	f-AO	14

Ссылки на интернет-источники

- 1. Статья «Квантовые числа электрона»:
- http://www.chemistry.ru/course/content/chapter2/section/paragraph2/theory.html
- 2. Статья «Квантовые числа электрона»:
- http://www.himhelp.ru/section23/section2/section9/
- 3. Изображение атомной орбитали:
- http://dl.schoolnet.by:81/file.php/61/8/Topic 15002da88f8do df72e7foc750e52c8bb/Theme f6bb59e3576ecf27f0386dc3fc5a c11e/theory.html
- 4.Изображение модели атома Резеофорда-Бора:
- http://www.sistema-stage.ru/brand news/351
- 5. Изорбажение форм атомных орбиталей s-орбитали:
- http://files.school-collection.edu.ru/dlrstore/133a5ccb-734dofe6-5026-ffe680100d3d/0011575G.htm

```
5. Изорбажение форм атомных орбиталей
s-орбитали:
http://files.school-collection.edu.ru/dlrstore/133a5ccb-734d-
9fe6-5026-ffe680109d3d/0011575G.htm
    р-орбиталей:
http://files.school-http://files.school-_http://files.school-
collection.edu.ru/dlrstore/133a5ccb-http://files.school-
collection.edu.ru/dlrstore/133a5ccb-http://files.school-
collection.edu.ru/dlrstore/133a5ccb-
734d-9fe6-5026-ffe680109d3d/0011576G.htm
d-орбиталей:
http://files.school-collection.edu.ru/dlrstore/133a5ccb-734d-
9fe6-5026-ffe680109d3d/0011596G.htm
f-орбиталей:
```

http://files.school-collection.edu.ru/dlrstore/133a5ccb-734d-

9fe6-5026-ffe680109d3d/0011597G.htm